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Trans-resveratrol induces a potential anti-lipogenic effect in lipopolysaccharide-
stimulated enterocytes
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Abstract
A DNA microarray analysis was conducted in Caco-2 cells to analyse the protective effects of trans-resveratrol on enterocyte physiology and metabolism in pro-
inflammatory conditions. Cells were pre-treated with 50 μΜ of trans-resveratrol and, subsequently, lipopolysaccharide (LPS) was added for 48 h. The microarray 
analysis revealed 121 genes differentially expressed between resveratrol-treated and non-treated cells (B> 0, is the odd that the gene is differentially expressed). Inhi-
bitor of DNA binding 1 (ID1), histidine-rich glycoprotein (HRG), NADPH oxidase (NOX1) and sprouty homolog 1 (SPRY), were upregulated by LPS treatment, but 
significantly blocked by trans-resveratrol pre-treatment (padj< 0.05, after adjusting for Benjamini-Hochberg procedure). Moreover, genes implicated in synthesis of 
lipids (z-score= -1.195) and concentration of cholesterol (z-score= -0.109), were markedly downregulated by trans-resveratrol. Other genes involved in fat turnover, 
but also in cell death and survival function, such as transcription factors Krüppel-like factor 5 (KLF5) and amphiregulin (AREG), were also significantly inhibited 
by trans-resveratrol pre-treatment. RT-qPCR-data confirmed the microarray results. Special mention deserves acyl-CoA synthetase long-chain family member 3 
(ACSL3) and endothelial lipase (LIPG), which were downregulated by this stilbene and have been previously associated with fatty acid synthesis and obesity in other 
tissues. This study envisages that trans-resveratrol might exert an important anti-lipogenic effect at intestinal level under pro-inflammatory conditions, which has not 
been previously described.
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Introduction

Our intestine is the first defence barrier located 
between the host and the luminal environment (1). 
The intestinal epithelium controls the passage of nu-
trients and fluids, but also protects the organism from 
the permeation of external antigens into the intestinal 
mucosa and circulatory system (2). Scientific evidence 
has demonstrated the implication of intestinal barrier 
integrity impairment in the development of abnormal 
inflammatory response (3). Intestinal inflammation is 
a continuous and protective process that aims to main-
tain gut integrity and normal functionality (4). For this 
purpose, a crosstalk between different cell types from 
the gut is required, which results in the regulation of the 
secretion of a range of cytokines and growth factors. 
However, when a dysregulation of one of these com-
ponents happens, an inappropriate inflammatory stimu-
lus could lead to several diseases such as inflammatory 
bowel disease, including ulcerative colitis and Crohn’s 
disease (5), celiac disease, food allergies, inflammatory 
bowel syndrome and metabolic diseases (6). Moreover, 
although controversial results have been reported about 
the occurrence of alterations in gut barrier integrity in 
obese animals (7), emerging data corroborate the pres-
ence of an intestinal inflammatory condition (8). Impor-
tantly, the presence of a chronic low-grade inflammato-
ry response that leads to metabolic dysfunctions is well 
established in obesity (9) and it has been reported that 
obesity-related comorbidities, such as type 2 diabetes 
and atherosclerosis, are usually accompanied by higher 

circulating levels of pro-inflammatory cytokines (10).
The administration of natural compounds (i.e. po-

lyphenols) to fight against inflammation-related meta-
bolic diseases is under research (11). In this context, 
trans-resveratrol (trans-3, 5, 4’-trihydroxystilbene), is 
a stilbene that has been extensively studied for its an-
tioxidant, anti-adipogenic and anti-lipogenic properties 
(12). In addition, beneficial properties of resveratrol on 
cardiovascular system have been widely studied (13). 
Accordingly, within the mechanisms involved in the an-
ti-atherogenic effects of resveratrol, modulation of lipid 
metabolism has been reported (14). Besides, the anti-
inflammatory role of the stilbene seems to be implicated 
in the protection against the development of cardiovas-
cular risk factors (14) and the action of this molecule 
against acute inflammation at intestinal level has been 
demonstrated (15).

Caco-2 cells are a human intestinal epithelial cell 
model that has been previously used to investigate 
the intestinal absorption and metabolism of trans-res-
veratrol (16) and the impact of the stilbene on intesti-
nal barrier function (17). Lipopolysaccharide (LPS), a 
Gram-negative bacterial outer membrane constituent, 
is known to interact with intestinal epithelial cells and 
to induce stimulation of transcription and translation 
of pro-inflammatory mediators (18). In this sense, high 
LPS levels are considered to be an important factor in 
the pathophysiology of intestinal inflammatory diseases, 
has been postulated as one of the leading causes of obe-
sity (19) and has been associated with increased risk of 
atherosclerosis in humans (20, 21). Thus, induction of 
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inflammation in enterocytes by LPS administration is 
considered an appropriate in vitro model to mimic intes-
tinal inflammation (22).

Accordingly, this investigation sought to analyse the 
molecular functions and pathways that might be affec-
ted by trans-resveratrol in LPS-treated enterocytes, a 
model that mimics the low-grade inflammatory condi-
tion usually present in metabolic diseases, such as obe-
sity and atherosclerosis (19).

Materials and methods

Cell culture and treatment
Caco-2 cells were maintained in an incubator set 

at 37°C and 5% carbon dioxide and 90% of relative 
humidity. The cells were cultured in Dulbecco’s modi-
fied Eagle’s medium with GlutaMax (DMEM, Gibco, 
Rockville, MD, USA) containing 10% fetal bovine 
serum (FBS, Gibco), 1% of non-essential amino acids 
(NEAA, Lonza, Basel, Switzerland), 1% penicillin 
(10000 U/mL)-streptomicyn (10000 μg/mL) (Gibco) 
and 1% amphoterizin B (250 μg/mL, Gibco). The 
culture medium was changed every 2 days. Once cells 
reached 80% confluence, confirmed by microscopic 
observance, they were dissociated with 0.05% trypsin-
EDTA solution and subcultured on a 75 cm2 flasks at 
a density of 250000 cells per cm2. The cells were see-
ded in 6-well cell culture plate at 30,000 cells per cm2. 
Culture medium was replaced every 2 days until the day 
of the experiment. Experiments were conducted 15-19 
days post-seeding.

For the experiments, cells were treated with stan-
dard LPS from E. coli K12 strain- TLR4 ligand (Invi-
voGen, San Diego, CA, USA). Concentrations of LPS 
(1 μg/mL) and time of exposure (48h) were established 
based on previous studies (23). Before LPS stimulation, 
some samples were pre-treated with 50 μM of trans-
resveratrol, dissolved in ethanol, kindly provided by 
Prof. María Puy Portillo (Nutrition and Obesity group, 
University of the Basque Country, Vitoria, Spain). This 
dose was reported to be a realistic polyphenol concen-
tration commonly found in the gut following the intake 
of 500 mg of polyphenols (24). Upon 1h of incubation 
at 37°C, cell cultures were stimulated with endotoxin 
as previously mentioned. Untreated cells were used as 
controls.

RNA isolation and microarray analysis
Total RNA was extracted from Caco-2 cells using 

TRIzol® reagent according to the manufacturer’s ins-
tructions (Invitrogen, Carlsbad, CA, USA). As a last step 
of the extraction procedure, the RNA was purified with 
the RNeasy Mini-kit (Qiagen, Hilden, Germany). Be-
fore cDNA synthesis, RNA integrity from each sample 
was confirmed by using Agilent RNA Nano LabChips 
(Agilent Technologies, Santa Clara, CA, USA). 

The sense cDNA was prepared from 300 ng of total 
RNA using the Ambion® WT Expression Kit (Thermo 
Fisher Scientific, Waltham, MA, USA). The sense strand 
cDNA was then fragmented and biotinylated with the 
Affymetrix GeneChip® WT Terminal Labeling Kit (PN 
900671). Labeled sense cDNA was hybridized to the 
Affymetrix Human Gene 2.0 ST microarray according 
to the manufacturer protocols and using GeneChip® 

Hybridization, Wash and Stain Kit. Genechips were 
scanned with the Affymetrix GeneChip® Scanner 3000.

Microarray analysis
Both background correction and normalization were 

done using RMA (Robust Multichip Average) algo-
rithm (25). After quality assessment, a filtering process 
was performed to eliminate low expression probe sets. 
Applying the criterion of an expression value greater 
than 16 in 3 samples for each experimental condition 
(CONTROL, LPS, LPS+RSV), 38959 probe sets were 
selected for statistical analysis. R and Bioconductor 
(26) were used for preprocessing and statistical analy-
sis. LIMMA (Linear Models for Microarray Data) was 
used to find out the probe sets that showed significant 
differential expression between experimental conditions 
(27). Adjusted p value was calculated with Benjamini-
Hochberg procedure. Genes were selected as signifi-
cant using criteria of B> 0.  The Log Odds or B value 
is the odds or probability that the gene is differentially 
expressed, meaning that a gene with B=0 has a 50% 
chance to be differentially expressed.

Functional enrichment analysis of Gene Ontology 
(GO) categories was carried out using standard hyper-
geometric test (28). The biological knowledge extrac-
tion was complemented through the use of Ingenuity 
Pathway Analysis (Ingenuity Systems, www.ingenuity.
com), whose database includes manually curated and 
fully traceable data derived from literature sources.

Microarray data are accessible at the NCBI Gene 
Expression Omnibus website (http://www.ncbi.nlm.nih.
gov/geo/) with the accession number of GSE73650.

Confirmatory real-time quantitative PCR
Some genes whose expression was affected by trans-

resveratrol in the microarray analysis were validated 
using real-time quantitative polymerase chain reaction 
(RT-qPCR). For this purpose, RNA concentrations and 
quality were assessed by Nanodrop Spectrophotome-
ter 1000 (Thermo Scientific, Wilminton, DE, USA). 
RNA (2 μg) were reverse-transcribed to cDNA using 
Moloney murine leukemia virus reverse transcriptase 
(MMLV, Invitrogen). Taqman® Universal Master Mix 
and the following pre-designed Taqman® assays-on-
demand were used: KLF5 (Krüppel-like factor 5 (intes-
tinal), Hs00156145_m1; ACSL3 (acyl-CoA synthetase 
long-chain family member -3), Hs00244853_m1; LIPG 
(lipase, endothelial), Hs00195812_m1; AREG (am-
phiregulin), Hs00950669_m1; NOX1 (NADPH oxidase 
1), Hs01071088_m1; GAPDH (glyceraldehyde-3-phos-
phate dehydrogenase), Hs02758991_g1 (Applied Bio-
systems, Foster City, CA, USA). Amplification and de-
tection of specific products were conducted using ABI 
PRISM 7000 HT Sequence Detection System (Applied 
Biosystems). All samples were analysed in duplicate. 
The relative expression of each gene was calculated by 
the 2-∆∆Ct method (29).

Statistical analyses
Results are expressed as the average mean ± stan-

dard error of the mean (SEM). Statistical significance 
between experimental groups was assessed by Student’s 
t test. A probability of p< 0.05 was set up for determi-
ning statistically significant differences. SPSS 15.0 for 
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a total of 121 genes showed a B> 0 in the microarray 
analysis: 63 genes were downregulated and 58 genes 
upregulated (Supplementary table 1). From these, there 
were four that were upregulated by LPS, but were si-
gnificantly reversed (padj< 0.05) by trans-resveratrol 
pre-treatment (Figure 1): the inhibitor DNA binding 1, 
dominant helix-loop-helix protein (ID1, log FC= -0.88 
and padj< 0.01), histidine-rich glycoprotein (HRG, log 
FC= -1.24 and padj=0.01), NADPH oxidase 1 (NOX1, 
log FC= -1.94 and padj=0.01) and sprouty homolog 1, 
antagonist of FGF signalling (SPRY1, log FC= -0.57 
and p=0.03).

Biologically relevant networks and pathways
Functional enrichment analysis with Ingenuity Pa-

thway Analysis (IPA) software, detected altered (B> 0) 
molecular and cellular functions in the imported data 
set associated to cell death and survival; infectious di-
seases; lipid metabolism, small molecule biochemistry; 
lymphoid tissue structure and development, tissue mor-
phology; cellular development, cellular growth and pro-
liferation; DNA replication, recombination and repair. 
The genes involved in these pathways are listed in Table 
1. 

Networks analysed by the Ingenuity software des-
cribe the functional relationship between gene products 
based on known interactions reported in the literature. 
The most significant network that was affected by 
trans-resveratrol was cell death and survival, cellular 
assembly and organization, cellular function and main-
tenance (44 score). A second network was related to he-
reditary disorder, neurological disease and organ mor-
phology (38 score). The third network was related to 

Windows (SPSS, Chicago, IL, USA) was used for sta-
tistical analyses.

Results

Differential gene expression profile in cells treated 
with trans-resveratrol 

When comparing the gene expression profile of 
Caco-2 cells that were treated with LPS and those that 
were previously exposed to trans-resveratrol (50 μΜ), 

Figure 1. Average expression of genes that were downregulated 
by trans-resveratrol pre-treatment, according to Affymetrix Hu-
man Gene 2.0 ST DNA microarray analysis. Results are presented 
as mean ± SEM. Linear Models for Microarray Data was used to 
show probe sets with significant differential expression.  *p< 0.05, 
**p< 0.01, ***p< 0.001 vs CONTROL group; #p< 0.05, ##p< 0.01 
vs LPS group. Adjusted p value was calculated with Benjamini-Ho-
chberg procedure. SEM, standard error of the mean; LPS, lipopoly-
saccharide; RSV, trans-resveratrol; ID1, inhibitor of DNA binding 
1, dominant negative helix-loop-helix protein; NOX1, NADPH oxi-
dase 1; HRG, histidine-rich glycoprotein; SPRY1, sprouty homolog 
1, antagonist of FGF signalling.

Category Diseases or functions 
annotation p value z-score Genes

Cell Death and Survival

Necrosis 2.97E-03 1.804
ABCB1,AHR,ANKRD1,AREG,BLNK,CLYBL,ENC1,EPHX2,
HOXB9,HSPA8,ID1,IER3,IFI6,KLF5,KRT18,LUM,MT1X,M
T2A,NEO1,NFE2L2,NOX1,PHB2,PKP2,RPS3,SLC20A1,SP
TBN1,SSTR5-AS1,TOP1

Apoptosis 8.98E-03 1.174
ABCB1,AHR,ANKRD1,ANXA4,AREG,BBS2,BLNK,ENC1,G
LS2,HOXB9,HRG,HSPA8,ID1,IER3,IFI6,KLF5,KRT18,LU
M,MT2A,NFE2L2,NOX1,PHB2,PKP2,RPS3,SLC20A1,SPT
BN1,TOP1

Infectious diseases

Infection of cells 2.06E-03 -1.140 AREG,BMP2K,CRIM1,ENC1,KRT18,MT1X,MT2A,NOP56,
OSBPL3,RPL5,SLC20A1,SPTBN1,ZBTB2

Viral Infection 3.35E-02 -0.595
ABCB1,AHR,AREG,BMP2K,CRIM1,ENC1,FAM135A,IER3
,IFI6,KRT18,MT1X,MT2A,NOP56,OSBPL3,RPL5,SPTBN1
,ZBTB2

Lipid metabolism, Small molecule Biochemistry

Synthesis of lipids 1.48E-02 -1.195 ABCB1,ACSL3,ACSM3,AHR,AREG,EPHX2,HSPA8,KLF5,
ME1,NOX1

Fatty acid metabolism 6.43E-03 -1.060 ABCB1,ACSL3,ACSM3,AREG,EPHX2,HSPA8,KLF5,ME1,
SC5D

Concentration of cholesterol 2.62E-02 -0,109 AHR,EPHX2,LIPG,LPGAT1,SC5D
Lymphoid tissue structure and development, tissue morphology

Quantity of lymphatic system cells 1.99E-02 -1.408 ABCB1,AHR,BLNK,ID1,SLC20A1
Cellular Development, Cellular Growth and Proliferation

Proliferation of tumor cell lines 3.29E-02 -1.625 ABCB1,AHR,AREG,CLYBL,DDX21,ENC1,HOXB9,ID1,IER
3,KLF5,MT2A,MTUS1,NEO1,NFE2L2,NFS1,TOP1

DNA replication, Recombination and Repair
Metabolism of DNA 3.50E-02 1.996 ABCB1,AHR,AREG,FAM135A,ID1,TOP1

Table 1. Classification of metabolic pathways and genes targeted by trans-resveratrol in LPS-treated Caco-2 cells.

Functional enrichment analysis conducted by the Ingenuity Pathway Analysis. 
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lipid metabolism, molecular transport, small molecule 
biochemistry (31 score) and, finally, the forth and the 
fifth networks (28 score each) were associated with cell 
cycle. Figure 2 represents the integrated network analy-
sis and shows the relationship between genes involved 
in the first network related to cell death and survival, 
cellular assembly and organization, cellular function 
and maintenance and those related to the third network, 
lipid metabolism, molecular transport, small molecule 
biochemistry -related network.

Validation of the expression of genes implicated in 
lipid metabolism 

Genes that were selected for validation by RT-qPCR 
were implicated in both, lipid metabolism but also in 
cell death and survival categories (Table 1). Genes of 
interest were ACLS3, LIPG, NOX1, KLF5 and AREG. 
All the genes selected for validation showed a B> 1. 
Due to the action of resveratrol as an anti-oxidant 
compound, NOX1 was selected based on its relevance 
in oxidative stress processes. ACSL3 and LIPG were 
chosen since they were genes belonging to the lipid 
metabolism pathway and were not implicated in other 
pathways. Finally, KLF5 and AREG were selected since 
they were implicated in both lipid metabolism and in 
the first important pathway altered by resveratrol (cell 
death and survival).

The RT-qPCR findings were consistent with data of 
the microarray analysis (Figure 3).

In summary, the expression of key genes involved in 
synthesis of lipids (ACSL3, AREG and KLF5), choles-
terol metabolism (LIPG) and control of reactive oxygen 
species (NOX1) was downregulated by trans-resvera-
trol in LPS-stimulated Caco-2 cells.

Discussion

The burden of chronic diseases related to inflamma-
tion and characterized by metabolic dysregulations is 

increasing (30, 31). In order to be able to prevent such 
disturbances or to find a treatment for these problems, 
it is essential to understand the pivotal cellular compo-
nents and the specific tissues that participate in such 
metabolic impairments (32, 33). In the present research, 
Caco-2 cells were selected since enterocytes have been 
described to be a target site for trans-resveratrol action 
(16). Gene expression analysis conducted in this in vi-
tro study revealed some of the previously reported data 
on the anti-proliferative role and apoptosis-promoting 
effect of resveratrol (34). In this context, in the current 
study, molecular pathways involved in cell death and 
survival (apoptosis) were enhanced (z-score= 1.174), 
while pathways related to cellular development, cellu-
lar growth and proliferation (proliferation of tumour 
cell lines) were inhibited (z-score= -1.625). Moreover, 
resveratrol has been described to affect all aspects of 
DNA metabolism (35). Accordingly, in our study, a 
suppressive action of trans-resveratrol in DNA replica-
tion, recombination and repair (metabolism of DNA) 
was detected (z-score= -1.996). This outcome might be 
produced through direct mechanisms, as for instance 
inhibition of genes related to tumorigenesis, but also 
through indirect mechanisms (35). Trans-resveratrol 
significantly repressed the expression levels of LPS-
induced ID1 and HRG genes, that particularly in the 
case of ID1, have been associated with tumorigenesis 
(36, 37). However, indirect mechanisms that involve 
the abrogation of endogenous reactive oxygen spe-
cies (ROS) formation might also influence this mole-
cular pathway, since the redox state of a cell has been 
reported to control the stability of genomic DNA (35). 
In this context, ROS formation might be avoided when 
the amide adenine dinucleotide phosphate (NADPH) 

Figure 2. Integrated network analysis of upregulated and 
downregulated genes in Caco-2 cells pre-treated with trans-res-
veratrol and exposed to lipopolysaccharide. The node colour indi-
cates the gene expression level. 

Figure 3. Average and relative expression of genes chosen for va-
lidation. A) Average expression of genes from microarray analysis 
in LSP-stimulated Caco-2 cells pre-treated with trans-resveratrol. B) 
Relative expression of genes following validation by RT-qPCR in 
LPS-stimulated Caco-2 cells pre-treated with trans-resveratrol. Sta-
tistical analyses were conducted with Student T-test, ***p< 0.001, 
**p< 0.01, *p< 0.05. LPS, lipopolysaccharide; RT-qPCR, quantita-
tive real-time polymerase chain reaction.
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their target genes (47). In accordance, data from the cur-
rent investigation showed that treatment of Caco-2 cells 
with 50 μM of trans-resveratrol, repressed the expres-
sion of ACSL3, but also inhibited the expression levels 
of certain transcription factors such as KLF5 and AREG. 
Likewise, in relation to cholesterol metabolism, trans-
resveratrol inhibited the expression of endothelial lipase 
(LIPG). This lipase belongs to the TG lipase gene fami-
ly (49) and the members of this group show different 
substrate specificity. It has been stated that high density 
lipoprotein (HDL) is the main substrate for LIPG (50, 
51). Interestingly, LIPG was implicated in the pathway 
related to concentration of cholesterol showing a z-score 
of - 0.109. It should be taken into consideration that the 
small intestine plays a role in cholesterol homeostasis 
(52). Remarkably, from human studies, a positive cor-
relation between plasma levels of endothelial lipase and 
obesity-associated parameters (i.e. body mass index 
and waist circumference) have been demonstrated (53). 
From our data, it might be proposed that, apart from the 
already described inhibitory effect of trans-resveratrol 
on hepatic lipogenesis (54) and adipogenesis in 3T3-L1 
adipocytes (55), the stilbene may affect TG synthesis 
and cholesterol metabolism in enterocytes.

In our study, the expression of fatty acid synthase 
(FASN), which is considered one of the rate limiting 
enzymes in de novo lipogenesis, was not differentially 
expressed between both experimental groups (log FC= 
-0.34 when comparing the trans-resveratrol pre-trea-
ted Caco-2 cells and those exposed to LPS). However, 
FASN has been shown to be target of resveratrol and 
either the expression of the gene (56) or the activity 
of the enzyme (57) have been found to be affected by 
the stilbene. Importantly, regulation of FASN has been 
reported to take place mainly at transcriptional level, 
but also at post-transcriptional level (58, 59). In our 
study, trans-resveratrol also acted on the expression of 
KLF5 and AREG. KLF5, also called basic transcription 
element-binding (BTEB) 2, is highly expressed in the 
gut (60) and has been reported to control proliferation 
of different cell types, including fibroblasts, smooth 
muscle cells, white adipose tissue and intestinal epithe-
lial cells (61). Importantly, KLF5 plays a key role in 
the pathogenesis of cardiovascular diseases (61). KLF5 
has been demonstrated to be a pivotal regulator in the 
control of fatty acid synthase (FASN) expression (the 
key lipogenic gene) through an interaction with SRE-
BP-1 (61). On the other hand, AREG is a common li-
gand for the epidermal growth factor receptor (EGFR), 
which contributes to the growth of various cell types 
including intestinal epithelial cells (62). Ligands of 
EGFR, such as the EGF peptide, have been found to 
stimulate FASN expression mediated by SREBPs in 
certain cancer cell types (63). Besides, increases in pro-
tein expression of EGF (64) and EGFR (65) in the liver 
appeared to be related to cholesterol synthesis (66) and 
fatty acid synthesis (67). Accordingly, in human studies, 
a positive correlation between EGF ligands and serum 
cholesterol levels has been reported (68). Therefore, our 
data suggest that downregulation of AREG expression 
by trans-resveratrol might be linked somehow to alte-
rations in lipid metabolism, including cholesterol levels 
and a reduction of lipogenesis.

Noteworthy, resveratrol is believed to modulate li-

oxidase or NOX1 activity (35) is suppressed since it is 
considered one of the most relevant enzymes concer-
ning intracellular ROS generation (38). Accordingly, 
in the current study, NOX1 expression, significantly 
upregulated by LPS treatment was inhibited by trans-
resveratrol in enterocytes. In this context, it has been 
previously found that resveratrol treatment inhibited 
LPS-induced NOX1 expression and ROS generation 
in macrophages, which has been related to a suppres-
sion of LPS-induced foam cell formation (39). Never-
theless, another mechanism previously reported for 
other antioxidant molecules (i.e. ascorbic acid) might 
be plausible (40). This process is related to the capacity 
of resveratrol to avoid the activation of nuclear factor 
kappa β (NF-κβ) (23). NF-κβ is a transcription factor 
important in the regulation of immunity, inflammation, 
cell proliferation, cell transformation and tumour deve-
lopment and it has been demonstrated that ROS stress 
is a relevant stimuli that activates NF-κβ through the 
activation of inhibitors of kappa β kinase (IKK) (41). 
Since resveratrol has been reported to suppress nuclear 
translocation of p65 through the inhibition of IKK in 
LPS-stimulated Caco-2 cells, downregulation of NOX1 
by the stilbene observed in our study might be avoiding 
the NF-κβ signalling pathway, favouring an anti-inflam-
matory and apoptosis promoting effect of the stilbene in 
addition to its antioxidant function.

The main finding of this research work is the poten-
tial action of trans-resveratrol on the lipid synthesis 
process occurring at intestinal level. Indeed, the general 
molecular pathway associated with lipid synthesis was 
found to be inhibited (z-score= - 1.195). As far as we 
know, this is the first study conducted in intestinal cells 
showing an anti-lipogenic effect of resveratrol. 

The small intestine synthesizes triglycerides (TG) 
through two main processes, the monoacylglycerol 
(MAG) pathway, which occurs in enterocytes after fee-
ding, and the glycerol-3-phosphate (G-3-P) pathway, 
which is the de novo pathway for triglyceride synthe-
sis (42). Under normal conditions, these processes have 
been reported to represent 20 to 80% of total TG levels 
in chylomicrons (43). In addition, in the absence of die-
tary fat, the contribution of the intestine to the total TG 
levels in plasma has been reported to be around 20% 
or more (44), while, in vivo, it might supply up to 40% 
in fasting conditions (45). Long-chain acyl-CoA synthe-
tases (ACSL) are enzymes responsible for the activa-
tion process of fatty acids that precede their entrance to 
MAG or G-3-P pathway for TG synthesis. 

Five members of ACSL family have been descri-
bed but, in small intestine, the expression of two iso-
forms (ACSL3 and ACSL5), seems to predominate (46). 
ACSL3 is located in lipid droplets or endoplasmic reti-
culum, and it is supposed to play a key role in fatty acid 
uptake and lipid synthesis (47, 48). In this trial, an inhi-
bitory action of trans-resveratrol on the expression of 
ACSL3 gene was detected. In a study conducted by Bu 
et al. (47), it was observed that knockdown of ACSL3 
significantly suppressed the gene activity of certain li-
pogenic transcription factors such as peroxisome pro-
liferator activation receptor-γ (PPAR-γ), carbohydrate 
responsive element-binding protein (ChRBP), sterol re-
gulatory element-binding protein-1c (SREBP-1c), and 
liver X receptor-α (LXR), as well as the expression of 
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