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Abstract: Insulin regulates the glucose homeostasis by inducing tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. IRS1 is 
the best studied member of this family and insulin-induced Tyrosine phosphorylation of (YXXM) motifs provides docking site for SH2 doma-
in-containing proteins. Recent studies have suggested that genetic and/or environmental factors may affect the expression and phosphorylation 
levels of IRS1, and these could be important for development of insulin resistance. To shed light to the molecular basis of type 2 diabetes we 
wanted to determine whether YXXM motifs are genetically modified in these patients. We have isolated mononuclear cells of eighteen type 2 
diabetes patients and prepared genomic DNA and protein lysates from these cells. The genomic DNA was used to sequence IRS1 gene, and pro-
tein lysates were used to determine the expression and phosphotyrosine levels of IRS1 after insulin stimulation. Although, we did not detect any 
mutations at/or near the YXXM coding regions in patients’ DNA, immunprecipitation analysis of IRS1 indicated decreased levels of expression 
and tyrosine phosphorylation of  IRS1 in patient’s  samples  compared to that of  healthy controls. Our  results suggest that mononuclear cells of 
patients can be used to  test  the  levels of insulin responsiveness  before  therapy. 
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Introduction

Type 2 diabetes is a chronic metabolic disorder 
affecting >5% of the population in Western countries 
(1,2). Insulin resistance is predisposed to developing 
type 2 diabetes, and a common pathological state in 
which target cells fail to respond to ordinary levels of 
circulating insulin (3,4).

Insulin is the primary hormone that regulate the 
glucose homeostasis via inducing complex signaling 
system and insulin receptor substrate (IRS) proteins 
are the key players in this system (5,6). IRS1 is widely 
expressed in human tissues and  the best studied member 
of IRS protein family (7,8). IRS1 is an adaptor molecule 
that connect insulin receptor to downstream elements 
of insulin signaling such as phosphatidylinositol-3-
kinase (PI3K) and mitogen activated protein kinases 
(MAPK’s) (9,10). IRS1 interacts with tyrosine kinase 
receptors through its pleckstrin homology domain (PH) 
and a phosphotyrosine binding domain (PTB) (11). 
IRS1 has several YXXM motifs on C-terminal, and 
tyrosine phosphorylation of these motifs by insulin 
receptor (IR) trigger intracellular signaling cascades 
which activates PI3K and AKT (12-14). Activation of 
AKT regulates glucose uptake as well as glycogen and 
protein synthesis (12,15).

 IRS1 function is regulated by post-translational 
modifications (16). Although tyrosine phosphorylation 
of IRS1 promotes insulin signaling, its Ser/Thr 
phoshorylation generally inhibits the insulin signaling 
by inducing  degradation and dissociation of IRS1 
from the insulin receptor and inhibition of its tyrosine 
phosphorylation (17). These regulations are highly 

conserved under physiological conditions (18).  
Recent studies have shown that genetic and/or 

environmental factors affect the expression levels  as 
well as phosphorylation status of IRS1, and some 
of these Ser/Thr phosphorylations are important in 
developing insulin resistance (19,20). Most of the results 
claiming the importance of Ser/Thr phosphorylations 
in development of insulin resistance originates from 
studies done in cell lines or in animal models (21-23). 
Limited number of studies using human samples have 
shown that there is a strong correlation between reduced 
tyrosine phosphorylation, diminished expression, and 
increased Ser/Thr phoshorylations of IRS1 and type 2 
diabetes (24-27). In addition to these, some missense 
mutations in IRS1 gene have also been identified. These 
changes include Ala512Pro, Gly972Arg, Pro170Arg, 
Ser809Phe, Met209Thr, Ser892Gly, Gly819Arg, 
Arg1221Cys (28-31). Among these, Gly972Arg is the 
most common variation which has been associated with 
development of  Type 2 Diabetes (32-34).

In this study, we wanted to determine whether 
inactivation mutations on YXXM motifs are responsible 
for development of type 2 diabetes. Therefore, we 
applied simple and non-invasive method to evaluate 
IRS1 signaling in mononuclear cells of patients with 

Received  January 20, 2016; Accepted January 31, 2016; Published 
February 04, 2016

* Corresponding author: O. N. Ozes, Akdeniz University Medical 
School,  Department of Medical Biology and Genetics, Antalya, 
Turkey. Email: osmanozes@gmail.com

Copyright: © 2016 by the C.M.B. Association. All rights reserved.

Gorgisen et al. Cell. Mol. Biol.2016, 62 (2): 25-30
ISSN: 1165-158X

doi: 10.14715/cmb/2016.62.2.5



26

Heterogeneity of type 2 diabetes.G. Gorgisen et al. 2016 | Volume 62 | Issue 2

Type 2 Diabetes.

Materials and Methods

Clinical parameters of patients included in this study
Eighteen  patients aged from 23 to 52, diagnosed with 

Type 2, had BMI (Body Mass Index)’s higher than 19 
and did not take any treatment such as metformin were 
included in this study. Patients who were pregnant, had 
acute or chronic diseases, and taking any medications  
were excluded  in this study.

  
Tissue procurement

Blood samples were taken from 18 patients and 15 
non-diabetic controls. Informed consent was obtained 
from all individual participants included in the study. 
Procedures have been approved by the ethics board of 
Akdeniz University, and were performed in accordance 
with the Declaration of  Helsinki.

Mutational analyses of PI3K binding sites of IRS1 in 
Type 2 diabetes patients

Genomic DNA was extracted from whole blood of 
patients and controls by using Qiagen DNA isolation kit.  
Genetic analysis of the PI3K binding site of IRS1 gene 
was performed by PCR amplification. The following 
primers were used for PCR amplification: Primer 1/1 
(forward, 5’g gag gtg gca gtg gag gcc gac tgc c3’; 
reverse, 5’cct cag ggc cgt agt agc agt c3’)  Primer 1/2 
(forward, 5’ctg gag ccc agc ctt cca catc3’; reverse, 5’ccc 
tgg gca ggc tca cct cctc3’)  PCR was performed in total 
volume of 25 µl, containing 1X Qiagen Taq polymerase 
buffer, 2 mM MgCl2, 6 mM dNTPs, 0,5 uM  of  each 
primer, 0.2 units Qiagen Taq DNA polymerase and 50 
ng genomic DNA. PCR conditions were  5 minutes at 
94 °C, followed by 35 cycles of 94 °C for 30 seconds , 
58 °C for 1 minutes, 72 °C for 45 seconds, and one cycle 
of 72 °C for 10 minutes. PCR products were purified 
by the Invitrogen PCR Purification Kit (Carlsbad, CA), 
and the  Big dye-terminator sequencing kit (Applied 
Biosystems, Foster City, CA) was used for the primers 
during amplification. Sequencing fragments were 
detected by capillary electrophoresis using the ABI 
Prism 3130 DNA analyzer (Applied Biosystems, Foster 
City, CA). In all cases, samples harboring mutations 
were reamplified and re-sequenced using the same 
experimental conditions. Sequence chromatograms 
were analyzed by Finch TV.

Cell culture
Total mononuclear cells were isolated from 

peripheral blood using ficoll-hypaque (Sigma) gradient 
method. WBC (white blood cells) were counted by 
Beckman cell counter and  each samples were equally 
divided to two flasks. Cells were grown in 5% CO2 at 37 
°C in Roswell Park Memorial Institute medium (RPMI-
1640) (Biochrome)  supplemented with 10% FBS 
(Biochrome), 2 mM L-glutamine, 100 μg/ml penicillin, 
50 μg/ml streptomycin.  Cells were initially starved 
overnight in RPMI-1640, treated with 100μM Sodium 
orthovanadate one hour prior to addition of  insulin (100 
ng/ml)  for five minutes.

Immunoprecipitation (IP) and Western Blot analysis
Reagents were obtained from the following sources: 

monoclonal anti-IRS1, antiphosphotyrosine antibodies 
and protein A/G-agarose beads  from Santa Cruz 
Biotechnology, Inc. (Santa Cruz, CA);  anti-rabbit HRP 
and anti-mouse HRP were purchased from  BioRad 
(Hercules, CA). 

WBC were homogenized in Triton X-100 buffer 
containing  50 mM HEPES, pH 7.0, 150 mM NaCl, 
10% glycerol, 1.2% Triton X-100, 1.5 mM MgCl2, 1 
mM EGTA, 10 mM sodium pyrophosphate, 100 mM 
NaF, 1 mM sodium orthovanadate,  1 mM PMSF, 0.15 
units/ml aprotinin, 10 μg/ml leupeptin, and 10 μg/ml 
pepstatin A. Two milligrams of cell lysates were pre-
cleared with protein A/G agarose for 1 hr, centrifuged  
at 10,000 rpm for 1 minute, the  supernatants were 
transfered to another tube and  2 mg of anti-IRS1 
antibody was added and samples were  shaken for 3 h at 
4°C, then 100 μl Protein A/G agarose beads were added  
and the mixture was shaken overnight at 4°C. Samples 
were centrifuged at 10,000 rpm for 1 min.  at 4 °C, and 
the pellets were washed three times with lysis buffer, 
beads were  resuspended in 100 μl of Laemmli buffer,  
boiled for 5 min, centrifuged and 50 μl of supernatants 
were fractioned using 7.5 % polyacryamide gels and 
transferred to PVDF membranes. The blots were first 
labeled with anti-phosphotyrosine antibody. Labeled 
blots were then stripped off and re-labeled with anti-
IRS1 antibody. Signal intensity on blots were determined 
using the enhanced chemiluminescent detection system.

Statistical analysis
The statistical software SPSS was used. 

Comparison of parameter was performed using 
Wilcoxon Signed Ranks Test. A p value of <0,05 was 
considered to be statistically significant.

Results

The clinical features of our patients are summarized 
in Table 1. Since phosphorylation of IRS1 at YXXM 
motif is the main event in insulin signaling we thought 
that alterations at these motifs would affect insulin 
response. Therefore, initially we want to determine the 
genomic changes at or around YXXM motifs of IRS1. 
To test our hypothesis, we sequenced coding region of 
IRS1 between the amino acids 561-1028. 

The sequenced region spans GYMPMS616P, 
DYMPMS636P, GYMMMS666P, DYMNMS736P motifs 
and mutational analysis of these regions revealed no 
mutation. 

Since we could not detect any mutations at above 
mentioned regions of IRS1, we thought that expression 
or tyrosine phosphorylation of IRS1 could be different 
in these patients compared to healthy controls. 
Therefore, we determined phosphorylation status and 
expression levels of IRS1.  Most of the mononuclear 
cells of healthy controls (number 1, 7, 12, 16, 20, 28, 
39, 40, 41) responded to insulin as judged by increased 
tyrosine phosphorylation and/or stabilization of IRS1, 
and only six controls (numbers 2, 3, 15, 19, 23, 27) 
did not respond to insulin significantly by increased 
tyrosine phosphorylations of IRS1 however five of them 
(numbers 3, 15, 19, 23, 27) responded to insulin through 
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as judged by increased tyrosine phosphorylation, 
expression and stabilization of IRS1 and patients 10 and 
43 responded to insulin only by increased expression 
level of IRS1, Figure 3.  However, different than healthy 

increased IRS1 expression levels Figure 1 and Figure 2.  
Contrary to these, 2 of 18 patients (patients 18, 

21) responded to insulin similar to healthy controls 

Figure 1. IRS1 expression and phospho-tyrosine levels of controls 
(controls 2, 7, 12, 15, 16, 39, 40, 41) (ins: insulin treated sample; 
IP: Immunoprecipitation; IB: Immunoblot).

Figure 2. IRS1 expression and phospho-tyrosine levels of controls 
(controls 1, 3, 19, 20, 23, 27, 28) (ins: insulin treated sample; IP: 
Immunoprecipitation; IB: Immunoblot). 

Figure 3. IRS1 expression and phospho-tyrosine levels of patients 
(patients 5, 10, 18, 21, 43) (ins: insulin treated sample; IP: Immu-
noprecipitation; IB: Immunoblot). 

Figure 4. IRS1 expression and phospho-tyrosine levels of patients 
(patients 4, 6, 9, 17, 22, 42, 44) (ins: insulin treated sample; IP: 
Immunoprecipitation; IB: Immunoblot). 

Patient No Gender Age BMI Clinical History
4 M 28 34,1 None
5 M 33 24,6 Schizophrenia
6 M 28 29,7 Type 2 diabetes history in  the first generation
9 F 33 23,9 None
10 F 29 24 None
13 F 26 27,2 Type 2 diabetes history in  the first-second generation
14 F 25 26,6 Thalassemia carrier
17 F 52 24 Rheumatoid arthritis, Hashimoto's thyroiditis, Hyperlipidemia
18 M 23 24 None
21 M 24 29 None
22 M 38 27,01 None
25 M 37 36,8 Hypercholesterolemia
26 F 32 24 None
37 F 32 19,1 Type 2 diabetes history in  the first-second generation
38 M 32 23,7 Type 2 diabetes history in  the first-second generation
42 M 38 26,9 None
43 F 24 20,6 Lipodystrophy
44 M 33 30 None  

Table1. Clinical features of patients (M: Male; F: Female; BMI: Body Mass Index).
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controls, expression level of IRS1 did not change in 2 
patients (patients 22, 37), Figure 4 and Figure 5, and 
immediately degraded in 5 patients (patients 13, 14, 
25, 26 and 38), Figure 5 after insulin stimulation, and 
remaining 6 patients (patients 4, 5, 9, 17, 42, 44) did 
not show detectable level of IRS1 expression, Figure 4.

It was shown in the overall statistical analysis that 
IRS1 and pIRS1 levels of controls were statistically 
significant compared to the patients in terms of response 
to insulin.

Discussion

Type 2 diabetes is a multifactorial disorder 
characterized by insulin resistance and failure of 
secretion insulin from pancreatic beta cells (35). IRS1 
protein is an adaptor molecule which act as a docking 
molecule that connect receptor activation to the 
downstream targets. Regulation of IRS1 activity by post-
translational modifications and/or genomic changes is 
crucial to understand the molecular mechanism of Type 
2 Diabetes and insulin resistance (16,21,36). Several 
studies showed that G972A change is the most common 
alteration of Type 2 diabetes patients in Western world 
(20,37,38). However, mutations or at/or around YXXM 
motifs have not been reported. Esposide et al. suggested 
that missense mutations of these sites can be the most 
critical sites, and changes at these region would have 
deleterious effect on activation or inactivation of the 
insulin signaling (39). In this respect, we sequenced the 
region covering YXXM motifs of IRS1, however, we 
did not find any changes in these sites.

Up to date, most of the studies on IRS1 protein have 
been done on cell lines and animals and sometimes their 
results did not correlated with humans (40). Several 
previous studies have shown decrease in expression 
or phosphorylation levels of IRS1 in muscles and 
adipocytes of type 2 diabetes patients compared to 
the healthy controls (41-43). Similar to these findings, 
Pasini et al. demonstrated that while expression levels of 
IRS1 did not change its tyrosine phosphorylation levels 
decreased in lymphocytes of patients with metabolic 
syndromes (44). Level of IRS1 in any cells can vary 
depending on the presence and amount of various 
growth factors and cytokines (23,45,46).  Most of the 

studies performed in this respect suggests that level of 
IRS1 protein decreases after chronic insulin treatment 
via proteasomal degradation (47-50). Therefore, 
insulin-mediated degradation of IRS1 seem to be one of 
the mechanism causing metabolic disorders or insulin 
resistance. 

In line with previous studies, we did not detect any 
IRS1 protein in six patients (patients 4, 5, 9, 17, 42, 
44), and level of IRS1 did not change in three patients 
(patients 6, 22, 37) after insulin stimulation. Contrary 
to this, mononuclear cells of patients 18, 21 responded 
to insulin as good as cells of healthy controls as judged 
by increased tyrosine phosphorylation of IRS1. In these 
cases, IRS1 may not be responsible for development of 
insulin resistance, and other signaling components need 
to be studied.  One of the possible mechanism could 
be increased S/T phosphorylation of IRS1, which may 
interfere with binding of adaptors proteins (such as 
Grb2, Shc) to IRS1 and inhibits down stream signaling 
events. 

 In patients 13, 14, 25, 26 and 38 we did not 
observe any tyrosine phosphorylation, however, IRS1 
levels were reduced after insulin stimulation. This is 
opposite to what we observed in most of the control 
samples where insulin induces stabilization of IRS1. 
Among these patients 13, 37 and 38 have the same 
clinical history implying that behavior of IRS1 may be 
considered as a biomarker for some patients. The reason 
for immediate degradation of IRS1 in these patients may 
be the consequence of aberrant phosphorylation of IRS1 
which may facilitate rapid proteasomal degradation.

Overall, our study shows that phosphorylation and 
expression levels of IRS1 is different in mononuclear 
cells of Type 2 Diabetes patients and this non-invasive 
method may be used to assess the effects of interventions 
with specific therapeutic strategies. Similar study can 
also be done after treatment to see whether in vitro 
results will correlate with in vivo data. 
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