Issue
Copyright (c) 2023 Qianwen Zhang, Yiyu He, Hao Xu, Yuqiao Zeng, Li Wang, Zengxi Xue, Qingyun Sun, Likun Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.MicroRNA-181a-5p alleviates acute liver failure in mice by inhibiting HMGB1
Corresponding Author(s) : Likun Wang
Cellular and Molecular Biology,
Vol. 69 No. 9: Issue 9
Abstract
MicroRNAs (miRNAs) control liver diseases, but the role of microRNA-181a-5p in acute liver failure (ALF) is unclear. In this study, the ALF model was generated by injection of D-galactosamine (D-GalN) and lipopolysaccharide (LPS). The levels of miRNAs were assessed by microarray and qRT-PCR. The expression of caspase 3 was detected as the marker of cell apoptosis in ALF by immunohistochemistry and western blot. The targeting of microRNA-181a-5p on the high mobility group box 1 (HMGB1) was verified by dual luciferase assay. The impact of microRNA-181a-5p and HMGB1 was explored by flow cytometry. Results showed that microRNA-181a-5p was significantly down-regulated by D-GalN/LPS in vivo and in vitro, while the level of HMGB1 was up-regulated after the challenge. Furthermore, microRNA-181a-5p overexpression attenuated cell apoptosis in D-GalN/TNF-treated BNLCL2 cells. MicroRNA-181a-5p could directly target HMGB1 mRNA and repress its expressions, in further HMGB1 is involved in microRNA-181a-5p effect on cell apoptosis of ALF. In conclusion, these findings demonstrate that microRNA-181a-5p regulates hepatocyte apoptosis via HMGB1 in the development of ALF, which may provide potential therapeutic targets for ALF. However, the precise underlying mechanism that connects microRNA-181a-5p and HMGB1 remains to be explored.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX