Issue
Identification of bacteria using volatile organic compounds
Corresponding Author(s) : F. Fallah
Cellular and Molecular Biology,
Vol. 63 No. 2: Issue 2
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. New England Journal of Medicine. 2010;362:1804-13.
- Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet. 2011;377:228-41.
- Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, Albrecht V, Limbago B, et al. Prevalence of methicillin-resistant Staphylococcus aureus as an etiology of community-acquired pneumonia. Clinical infectious diseases. 2012;54:1126-33.
- Kallen A, Reed C, Patton M, Arnold K, Finelli L, Hageman J. Staphylococcus aureus community-onset pneumonia in patients admitted to children's hospitals during autumn and winter of 2006–2007. Epidemiology and infection. 2010;138:666-72.
- Barson WJ, Kaplan S, Torchia M. Epidemiology, pathogenesis, and etiology of pneumonia in children. Acessível em: http://www uptodate com Versí£o. 2012;17.
- Organization WH. Antimicrobial resistance global report on surveillance: 2014 summary. 2014.
- Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS pathogens. 2013;9:e1003311.
- Grace CJ, Lieberman J, Pierce K, Littenberg B. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clinical infectious diseases. 2001;32:1651-5.
- Thorn RMS, Reynolds DM, Greenman J. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains< i> in vitro. Journal of Microbiological Methods. 2011;84:258-64.
- Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors. 2011;11:1105-76.
- Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Natural product reports. 2007;24:814-42.
- Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chemical reviews. 2008;108:705-25.
- Friedrich M. Scientists Seek to Sniff Out Diseases. JAMA. 2009;301:585-6.
- Lirk P, Bodrogi F, Raifer H, Greiner K, Ulmer H, Rieder J. Elective haemodialysis increases exhaled isoprene. Nephrology Dialysis Transplantation. 2003;18:937-41.
- Dolch M, Frey L, Hornuss C, Schmoelz M, Praun S, Villinger J, et al. Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. Journal of Breath Research. 2008;2:037010.
- Pierrakos C, Vincent J-L. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.
- Barker M, Hengst M, Schmid J, Buers H, Mittermaier B, Klemp D, et al. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27:929 - 36.
- Boots AW, Smolinska A, Berkel JJBNv, Fijten RRR, Stobberingh EE, Boumans MLL, et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography–mass spectrometry. Journal of Breath Research. 2014;8:027106.
- Carroll W, Lenney W, Wang T, Å panć›l P, Alcock A, Smith D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatric pulmonology. 2005;39:452-6.
- Enderby B, Smith D, Carroll W, Lenney W. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatr Pulmonol. 2009;44:142 - 7.
- Schulz S, Fuhlendorff J, Reichenbach H. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron. 2004;60:3863-72.
- Tait E, Hill K, Perry J, Stanforth S, Dean J. Development of a novel method for detection of Clostridium difficile using HS"SPME"GC"MS. Journal of applied microbiology. 2014;116:1010-9.
- Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiology Biomarkers & Prevention. 2010;19:182-95.
- Shestivska V, Nemec A, Drevinek P, Sovova K, Dryahina K, Spanel P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:2459 - 67.
- Filipiak W, Sponring A, Baur MM, Ager C, Filipiak A, Wiesenhofer H, et al. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology. 2012;158:3044-53.
- Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, et al. Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa. BMC microbiology. 2012;12:113.
- Dolch M, Hornuss C, Klocke C, Praun S, Villinger J, Denzer W, et al. Volatile compound profiling for the identification of Gram"negative bacteria by ion"molecule reaction–mass spectrometry. Journal of applied microbiology. 2012;113:1097-105.
- Zhu J, Bean HD, Jiménez-Díaz J, Hill JE. Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. Journal of Applied Physiology. 2013;114:1544-9.
- Kunze N, Göpel J, Kuhns M, Jünger M, Quintel M, Perl T. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS). Applied microbiology and biotechnology. 2013;97:3665-76.
- Gao J, Zou Y, Wang Y, Wang F, Lang L, Wang P, et al. Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. Journal of Breath Research. 2016;10:027102.
References
Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. New England Journal of Medicine. 2010;362:1804-13.
Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet. 2011;377:228-41.
Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, Albrecht V, Limbago B, et al. Prevalence of methicillin-resistant Staphylococcus aureus as an etiology of community-acquired pneumonia. Clinical infectious diseases. 2012;54:1126-33.
Kallen A, Reed C, Patton M, Arnold K, Finelli L, Hageman J. Staphylococcus aureus community-onset pneumonia in patients admitted to children's hospitals during autumn and winter of 2006–2007. Epidemiology and infection. 2010;138:666-72.
Barson WJ, Kaplan S, Torchia M. Epidemiology, pathogenesis, and etiology of pneumonia in children. Acessível em: http://www uptodate com Versí£o. 2012;17.
Organization WH. Antimicrobial resistance global report on surveillance: 2014 summary. 2014.
Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS pathogens. 2013;9:e1003311.
Grace CJ, Lieberman J, Pierce K, Littenberg B. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clinical infectious diseases. 2001;32:1651-5.
Thorn RMS, Reynolds DM, Greenman J. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains< i> in vitro. Journal of Microbiological Methods. 2011;84:258-64.
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors. 2011;11:1105-76.
Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Natural product reports. 2007;24:814-42.
Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chemical reviews. 2008;108:705-25.
Friedrich M. Scientists Seek to Sniff Out Diseases. JAMA. 2009;301:585-6.
Lirk P, Bodrogi F, Raifer H, Greiner K, Ulmer H, Rieder J. Elective haemodialysis increases exhaled isoprene. Nephrology Dialysis Transplantation. 2003;18:937-41.
Dolch M, Frey L, Hornuss C, Schmoelz M, Praun S, Villinger J, et al. Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. Journal of Breath Research. 2008;2:037010.
Pierrakos C, Vincent J-L. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.
Barker M, Hengst M, Schmid J, Buers H, Mittermaier B, Klemp D, et al. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27:929 - 36.
Boots AW, Smolinska A, Berkel JJBNv, Fijten RRR, Stobberingh EE, Boumans MLL, et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography–mass spectrometry. Journal of Breath Research. 2014;8:027106.
Carroll W, Lenney W, Wang T, Å panć›l P, Alcock A, Smith D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatric pulmonology. 2005;39:452-6.
Enderby B, Smith D, Carroll W, Lenney W. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatr Pulmonol. 2009;44:142 - 7.
Schulz S, Fuhlendorff J, Reichenbach H. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron. 2004;60:3863-72.
Tait E, Hill K, Perry J, Stanforth S, Dean J. Development of a novel method for detection of Clostridium difficile using HS"SPME"GC"MS. Journal of applied microbiology. 2014;116:1010-9.
Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiology Biomarkers & Prevention. 2010;19:182-95.
Shestivska V, Nemec A, Drevinek P, Sovova K, Dryahina K, Spanel P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:2459 - 67.
Filipiak W, Sponring A, Baur MM, Ager C, Filipiak A, Wiesenhofer H, et al. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology. 2012;158:3044-53.
Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, et al. Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa. BMC microbiology. 2012;12:113.
Dolch M, Hornuss C, Klocke C, Praun S, Villinger J, Denzer W, et al. Volatile compound profiling for the identification of Gram"negative bacteria by ion"molecule reaction–mass spectrometry. Journal of applied microbiology. 2012;113:1097-105.
Zhu J, Bean HD, Jiménez-Díaz J, Hill JE. Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. Journal of Applied Physiology. 2013;114:1544-9.
Kunze N, Göpel J, Kuhns M, Jünger M, Quintel M, Perl T. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS). Applied microbiology and biotechnology. 2013;97:3665-76.
Gao J, Zou Y, Wang Y, Wang F, Lang L, Wang P, et al. Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. Journal of Breath Research. 2016;10:027102.