Issue
Evaluation of in vitro biological activities: antioxidant; anti-inflammatory; anti-cholinesterase; anti- xanthine oxidase, anti-superoxyde dismutase, anti-α-glucosidase and cytotoxic of 19 bioflavonoids
Corresponding Author(s) : Jalloul Bouajila
Cellular and Molecular Biology,
Vol. 66 No. 1: Issue 1
Abstract
Pure compounds belonging to phenolic family were studied for their biological potential such as 5,8-dihydroxy-1,4-naphthoquinone (M1), rutin hydrate (M2), 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (M3), taxifolin (M4), myricetin (M5), plumbagin (M6), silibinin (M7), dihydromyricetin (M8), shikonin (M9), quercetin 3-β-D-glucoside (M10), (±)-taxifolin hydrate (M11), cardamonin (M12),(−)-epicatechin (M13), 9-chloro-10-hydroxy-anthracene-1,4-dione (M14), 9-chloro-10-hydroxy-2,3-dimethyl-anthracene-1,4-dione (M15), 2-chloro-3-(2-hydroxy-5-methylanilino)-1,4-naphthoquinone (M16), 2-chloro-3-(4-hydroxy-phenylamino)-(1,4) naphthoquinone (M17), 2-chloro-3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-(1,4)-naphtoquinone (M18), and myricitrin dihydrate (M19). These molecules were chosen based on two reasons; the limited or total absence of their exploitation in several studied activities and the use of other tests for the same activity. The evaluation of the in vitro anti-acetyl-cholinesterase (AChE), anti-5-lipoxygenase (5-LOX), anti-xanthine oxidase (XOD), anti-alpha glucosidase, anti-superoxide dismutase (SOD), anti-oxidant (DPPH (1, 1-diphenyl-2-picrylhydrazyl) and ABTS (2, 2- azinobis-3-ethylbenzothiazoline-6-sulphonate)), and anticancer activities of mentioned 19 molecules was explored during this work. M3, M14, M15, M16, M17, M18, M19 were exploited for the first time for such purposes. Tested compounds were shown to have interesting radical scavenging abilities against DPPH radicals, and the highest molecules among them were M19 and M5 (IC50 = 12.0 and 15.5 µM, respectively), and M4, M19 and M2 against ABTS (IC50= 1.9, 4.3 and 4.3 µM, respectively). Moreover, the majority of products showed very important cytotoxic activity since IC50 values were ranging between (IC50= 0.2 µM (M1) and 79 µM (M8)) against HCT116 cell line, and values of IC50= 0.2 µM for M1 against MCF7 cell line. All new molecules (non studied before) were shown to have great cytotoxic effect against both cancer cell lines.
Furthermore, molecule M5 was shown to have anti-inflammatory potential via the inhibition of 5-LOX enzyme (65% at 100 µM). In addition, M19 showed important anti XOD activity with 47% of inhibition at 100 µM. Also, it has been found that compound M3 had the best anti alpha glucosidase activity with 43.8 % of inhibition at 100 µM, the highest anti-AChE effect (IC50= 14.5 µM), and the best effect towards SOD (IC50= 10.0 µM). A structure-activity relationship study was also performed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res. 2001; 475: 89-111.
- Peer WA., Brown DE, Tague BW, Muday GK, Taiz I, Murphy AS. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 2001 ; 126 : 536-48.
- Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implication for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000 ; 52 : 673-751.
- Herzi N, Bouajila J, Camy S, Romdhane M, Condoret JS. Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food Chem. 2013 ; 141 : 3537-3545. doi: 10.1016/j.foodchem.2013.06.065.
- Bekir J, Cazaux S, Mars M, Bouajila J. In vitro anti-cholinesterase and anti-hyperglycemic activities of flowers extracts from seven pomegranate varieties. Ind. Crops Prod. 2016; 81 : 176-179. doi: 10.1016/j.indcrop.2015.11.066.
- Ellman GI, Courtney KD, Feather-stone RM. A new and rapid colorimetric determination of acethylcholinesterase activity. Biochem. Pharmacol. 1961 ; 7 : 88-95.
- Kohoude MJ, Gbaguidi F, Agbani P, Ayedoun MA, Cazaux S, Bouajila J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharm. Biol. 2017; 55 : 33-42. doi: 10.1080/13880209.2016.1226356.
- Lin JK, Chen PC, HO CT, Lin SSY. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3'-Digallate, (-) (Epigallocatechin-3-Gallate, and propyl gallate. J. Agric Food Chem. 2000 ; 48 : 2736-43.
- Li Y, Frenz CM, Li Z, Chen M, Wang Y, Li F, et al. Virtual and in vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against xanthine oxidase and cyclooxygenase-2 for gout treatment. Chem. Biol. Drug. Des. 2013; 81: 537-44. doi: 10.1111/cbdd.1248.
- Wang Z, Liu T, Gan L, Wang T, Yuan X, Zhang B, et al. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur. J. Pharmacol. 2010 ; 643 : 211–217. doi: 10.1016/j.ejphar.2010.06.027.
- Masuoka N, Isobe T, Kubo I. Antioxidants from Rabdosia japonica. Phyther. Res. 2006 ; 20 : 206–213. doi: 10.1002/ptr.1835.
- Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013 ; 150 : 805–817. doi: 10.1016/j.jep.2013.10.036.
- Latté KP and Kolodziej H. Antioxidant properties of phenolic compounds from Pelargonium reniforme. J. Agric. Food Chem. 2004 ; 52 : 4899–4902. Doi:10.1021/jf0495688
- Choi SE, Park KH, Han BH, Jeong MS, Seo SJ, Lee DI, et al. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by phenolic compounds from roots of rhododendron mucronulatum. Phyther. Res 2011 ; 25 : 1301–1305. doi: 10.1002/ptr.3376.
- Krishnan M, Jayaraj RdL, K J, Elangovan N. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryos against cadmium toxicity. Environ. Toxicol. Pharmacol. 2015 ; 39 : 1252-61. doi: 10.1016/j.etap.2015.04.021.
- Wu P, Ma G, Li N, Deng Q, Yin Y, Huang R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015. 173, 194–202. doi: 10.1016/j. foodchem 2014 ; 10.
- Beara IN, Lesjak MM, Četojević- Simin DD, Orćić DZ, Janković T, Anaćkov GT, et al. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of endemic Plantago reniformis G. Beck. Food Res. Int. 2012; 49: 501–507.
- Silva CG, Raulino RJ, Cerqueira DM, Mannarino SC, Pereira MD, Panek AD, et al. In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. Phytomedicine 2009 ; 16 : 761–767. doi: 10.1016/j.phymed.2008.12.019.
- Silva BA, Malva JO, Dias ACP. St. John's Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem. 2008 ; 110 : 611–619. doi.org/10.1016/j.foodchem.2008.02.047.
- Jung MJ, Heo SIl, Wang MH. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem 2008 ; 108 : 482–487. doi: 10.1016/j.foodchem.2007.10.081.
- Compaoré M, Lamien-Meda A, Mogoşan C, Lamien CE, Kiendrebeogo M, Voştinaru O, et al. Antioxidant, diuretic activities and polyphenol content of Stereospermum kunthianum Cham. (Bignoniaceae). Nat. Prod. Res. 2011 ; 25 : 1777–88. doi: 10.1080/14786419.2010.488630.
- Han J, Weng X, Bi K. Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon. Food Chem 2008 ; 106 : 2–10.
- Zarrelli A, Romanucci V, De Napoli L, Previtera L, Di Fabio G. Synthesis of new silybin derivatives and evaluation of their antioxidant properties. Helv. Chim. Acta. 2015; 98 : 399–409. DOI: 10.1002/hlca.201400282.
- Nile SH and Park SW. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from Maize (Zea mays L.). Chem. Biol. Drug. Des. 2014 ; 83 : 119–125. doi:10.1111/cbdd.12205.
- Weng XC and Wang W. Antioxidant activity of compounds isolated from Silvia plebeia. Food Chem. 2000 ; 71 : 489-493.
- Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20: 933-956.
- Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur. J. Pharmacol. 2006 ; 538 : 188–194. Doi:10.1016/j.ejphar.2006.03.070.
- Wang ZH, Kang KA, Zhang R, Piao MJ, Jo SH, Kim JS, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ. Toxicol. Pharmacol. 2010 ; 29 : 12–18. doi: 10.1016/j.etap.2009.08.007.
- Gupta MB, Bhalla TN, Gupta GP, Mitra CR, Bhargava KP. Anti-inflammatory activity of taxifolin. Jpn. J. Pharmacol. 1971 ; 21 : 377–82.
- Kawabata K, Sugiyama Y, Sakano T, Ohigashi H. Flavonols enhanced production of anti-inflammatory substance(s) by bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. BioFactors 2013 ; 39 : 422–429. doi: 10.1002/biof.1081.
- Li YY, Huang SS, Lee MM, Deng JS, Huang GJ. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-B and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 2015; 25 : 332–339.
- Saffoon N, Uddin R, Subhan N, Hossain H, Reza HM, Alam MA. In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum Variegatum found in Bangladesh. Adv. Pharm. Bull. 2014 ; 4 : 533–541. doi: 10.5681/apb.2014.079.
- Sekido C, Nishimura N, Takai M, Hasumi K. Inhibition of plasma hyaluronan-binding protein autoactivation by laccaic acid. Biosci. Biotechnol. Biochem. 2010 ; 74 : 2320–2322. Doi: 10.1271/bbb.100373.
- Kim HH, Oh MH, Park KJ, Heo JH, Lee MW. Anti-inflammatory activity of sulfate-containing phenolic compounds isolated from the leaves of Myrica rubra. Fitoterapia 2014 ; 92 : 188–193. doi: 10.1016/j.fitote.2013.10.007.
- Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 2005 ; 145 : 934–944. doi:10.1038/sj.bjp.0706246.
- Landa P, Kutil Z, Temml V, Vuorinen A, Malik J, Dvorakova M, et al. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones. Planta Med. 2012 ; 78 : 326–333. doi: 10.1055/s-0031-1280430.
- Yoshida LS, Kohri S, Tsunawaki S, Kakegawa T, Taniguchi T, Ohmuro HT, et al. Evaluation of radical scavenging properties of shikonin. J. Clin. Biochem. Nutr. 2014 ; 55 : 90-96. doi: 10.3164/jcbn.13-107.
- Singh B and Sharma RA. Anti-inflammatory and antimicrobial activity of shikonin derivatives from Arnebia hispidissima (Lehm.) DC. Phytopharmacology 2012 ; 3 : 68–81.
- Melzig MF, Pertz HH, Krenn L. Anti-inflammatory and spasmolytic activity of extracts from Droserae herba. Phytomedicine 2001 ; 8 : 225–229. doi:10.1078/0944-7113-00031.
- Park MK., Lee HJ, Choi JK, Kim HJ, Kang JH, Lee EJ, et al. Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacol. Biochem. Behav. 2014 ; 118 : 10–15. doi: 10.1016/j.pbb.2013.12.019.
- El-Naga R. N. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis. Toxicol. Appl. Pharmacol. 2014 ; 274 : 87–95. doi: 10.1016/j.taap.2013.10.031.
- Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J. Agric. Food Chem. 2005 ; 53 : 8537-8541. doi: 10.1021/jf051985c.
- Sato M, Murakami K, Uno M, Ikubo H, Nakagawa Y, Katayama S, et al. Structure-activity relationship for (+)-taxifolin isolated from Silymarin as an inhibitor of amyloid beta aggregation. Biosci. Biotechnol. Biochem. 2013 ; 77 : 1100-1103. doi:10.1271/bbb.120925.
- Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, et al. Silibinin inhibits acetylcholinesterase activity and amyloid béta peptide aggregation: A dual-target drug for the treatment of Alzheimer's disease. Neurobiol. Aging. 2011 ; 36 : 1792–1807. Doi:10.1016/j.neurobiolaging.2015.02.002.
- Chang YX, Ge AH, Donnapee S, Li J, Bai Y, Liu J, et al. The multi-targets integrated finger printing for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. J. Ethnopharmacol. 2015 ; 164 : 210–222. doi: 10.1016/j.jep.2015.02.018.
- Dhanya R, Arun KB, Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, et al. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem. 2014 ; 158 : 546–554. doi: 10.1016/j.foodchem.2014.02.151.
- Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ, et al. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem. Toxicol. 2014 ; 63 : 221-232. doi.org/10.1016/j.fct.2013.11.013.
- Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med. 2012 ; 12 : 265–272.
- Liang T, Wang Y, Zhang C, Ling H, Zhao S, Fang X. Hypolipidemic effect of myricetin. Chin. J. Lab. Diagn. 2009 ; 13 : 1670–1672.
- Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopez-Novoa JM, Leverve XM, et al. The flavonoid silibinin decreases glucose-6- phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose. Cell. Physiol. Biochem. 2007; 20 : 925–34.
- Bouderba S, Sanchez-Martin C, Villanueva GR, Detaille D, Koceí¯r EA. Beneficial effects of silibinin against the progression of metabolic syndrome, increased oxidative stress, and liver steatosis in Psammomys obesus, a relevant animal model of human obesity and diabetes. J. Diabetes. 2014 ; 6 : 184–192. doi: 10.1111/1753-0407.12083
- Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, et al. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway. Endocrine 2015 ; 50 : 378–389. doi: 10.1007/s12020-015-0599-5.
- Zhou Y and Mao T. Influence of dihydromyricetin on lowering blood glucose concentration and reducing early kidney damage in imparied glucose tolerance rats. Adv. Mater. Res. 2014 ; 1004–1005 : 857–863.
- Kamei R, Kitagawa Y, Kadokura M, Hattori F, Hazeki O, Ebina Y, et al. Shikonin stimulates glucose uptake in 3T3-L1 adipocytes via an insulin-independent tyrosine kinase pathway. Biochem. Biophys. Res. Commun. 2002 ; 292 : 642–651.
- O¨berg AI, Yassin K, Csikasz RI, Dehvari N, Shabalina IG, Hutchinson DS, et al. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats. PLoS One 2011 ; 6 : 1–10.
- Cimanga K, Ying L, Bruyne TD, Apers S, Cos P, Hermans N, et al. Radical scavenging and xanthine oxidase inhibitory activity of phenolic compounds from Bridelia ferruginea stem bark. J. Pharm Pharmacol. 2001 ; 53 : 757-61.
- Dew TP, Day AJ, Morgan MRA. Xanthine oxidase activity in vitro: Effects of food extracts and components. J. Agric. Food Chem. 2005 ; 53 : 6510-6515.
- Hadj-Salem J, Humeau C, Chevalot I, Harscoat-Schiavo C, Vanderesse R, Blanchard F, et al. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochem. 2010 ; 45 : 382–389.
- Kim HJ, Mun JY, Chun YJ, Choi KH, Ham SW, Kim MY. Effects of a naphthoquinone analog on tumor growth and apoptosis induction. Arch. Pharm. Res. 2003 ; 26: 405–410.
- Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 2004 ; 65 : 1208-16.
- Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, et al. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol. Pharm. 2015 ; 12 : 954-65. doi: 10.1021/mp5008053.
- Baloch SK, Ma L, Xu GH, Bai LF, Zhao H, Tang CY, et al. A potent anticancer agent of shikonin derivative targeting tubulin. Chirality 2015 ; 27 : 274-80. doi: 10.1002/chir.22425.
- Lin HY, Li ZK, Bai LF, Baloch SK, Wang F, Qiu HY, et al. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochem. Pharmacol. 2015 ; 96 : 93-106. doi: 10.1016/j.bcp.2015.04.021.
- Seo EJ, Wiench B, Hamm R, Paulsen M, Zu Y, Fu Y, et al. Cytotoxicity of natural products and derivatives toward MCF-7 cell monolayers and cancer stem-like mammospheres. Phytomedicine 2015 ; 22 : 438–443. doi: 10.1016/j.phymed.2015.01.012.
- Yang J and liu RH. Synergistic Effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem. 2009 ; 57 : 8581–8586. Doi: 10.1021/jf8039796.
- Amado NG, Predes D, Fonseca BF, Cerqueira DM, Reis AH, Dudenhoeffer AC, et al. Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the wnt/catenin signaling pathway. J. Biol. Chem. 2014 ; 289 : 35456–35467. doi: 10.1074/jbc.M114.621599.
- You HJ, Ahn HJ, Ji GE. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J. Agric. Food Chem. 2010 ; 58 : 10886-10892. Doi: 10.1021/jf102871.
- Zhu TTJ, Choi RCY, Chu GKY, Cheung AWH, Gao QT, Li J, et al. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. J. Agric. Food Chem. 2007 ; 55: 2438-2445. doi: 10.1021/jf063299z.
- Kim YJ, Kang KS, Choi KC, Ko H. Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells. Bioorg. Med. Chem. Lett. 2015 ; 25 : 2559-2564. doi: 10.1016/j.bmcl.2015.04.054.
- Saify ZS, Mushtaq N, Noor F, Takween S. Arif M. Role of quinone moiety as antitumour agents: a review. Pak. J. Pharm. Sci. 1999 ; 12 : 21–31.
- Onaran I, Sencan S, Demirtaş H, Aydemir B, Ulutin T, Okutan M. Toxic-dose warfarin-induced apoptosis and its enhancement by gamma ionizing radiation in leukemia K562 and HL-60 cells is not mediated by induction of oxidative stress. Naunyn-Schmied. Arch. Pharmacol. 2008 ; 378 : 471–481. doi: 10.1007/s00210-008-0306-7.
- Ham SW, Park J, Lee SJ, Kim W, Kang K, Choi KH. Naphthoquinone analogs as inactivators of cdc 25 phosphatase. Bioorg Med Chem Lett 8. 1998 ; 2507-2510.
References
Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res. 2001; 475: 89-111.
Peer WA., Brown DE, Tague BW, Muday GK, Taiz I, Murphy AS. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 2001 ; 126 : 536-48.
Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implication for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000 ; 52 : 673-751.
Herzi N, Bouajila J, Camy S, Romdhane M, Condoret JS. Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food Chem. 2013 ; 141 : 3537-3545. doi: 10.1016/j.foodchem.2013.06.065.
Bekir J, Cazaux S, Mars M, Bouajila J. In vitro anti-cholinesterase and anti-hyperglycemic activities of flowers extracts from seven pomegranate varieties. Ind. Crops Prod. 2016; 81 : 176-179. doi: 10.1016/j.indcrop.2015.11.066.
Ellman GI, Courtney KD, Feather-stone RM. A new and rapid colorimetric determination of acethylcholinesterase activity. Biochem. Pharmacol. 1961 ; 7 : 88-95.
Kohoude MJ, Gbaguidi F, Agbani P, Ayedoun MA, Cazaux S, Bouajila J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharm. Biol. 2017; 55 : 33-42. doi: 10.1080/13880209.2016.1226356.
Lin JK, Chen PC, HO CT, Lin SSY. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3'-Digallate, (-) (Epigallocatechin-3-Gallate, and propyl gallate. J. Agric Food Chem. 2000 ; 48 : 2736-43.
Li Y, Frenz CM, Li Z, Chen M, Wang Y, Li F, et al. Virtual and in vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against xanthine oxidase and cyclooxygenase-2 for gout treatment. Chem. Biol. Drug. Des. 2013; 81: 537-44. doi: 10.1111/cbdd.1248.
Wang Z, Liu T, Gan L, Wang T, Yuan X, Zhang B, et al. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur. J. Pharmacol. 2010 ; 643 : 211–217. doi: 10.1016/j.ejphar.2010.06.027.
Masuoka N, Isobe T, Kubo I. Antioxidants from Rabdosia japonica. Phyther. Res. 2006 ; 20 : 206–213. doi: 10.1002/ptr.1835.
Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013 ; 150 : 805–817. doi: 10.1016/j.jep.2013.10.036.
Latté KP and Kolodziej H. Antioxidant properties of phenolic compounds from Pelargonium reniforme. J. Agric. Food Chem. 2004 ; 52 : 4899–4902. Doi:10.1021/jf0495688
Choi SE, Park KH, Han BH, Jeong MS, Seo SJ, Lee DI, et al. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by phenolic compounds from roots of rhododendron mucronulatum. Phyther. Res 2011 ; 25 : 1301–1305. doi: 10.1002/ptr.3376.
Krishnan M, Jayaraj RdL, K J, Elangovan N. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryos against cadmium toxicity. Environ. Toxicol. Pharmacol. 2015 ; 39 : 1252-61. doi: 10.1016/j.etap.2015.04.021.
Wu P, Ma G, Li N, Deng Q, Yin Y, Huang R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015. 173, 194–202. doi: 10.1016/j. foodchem 2014 ; 10.
Beara IN, Lesjak MM, Četojević- Simin DD, Orćić DZ, Janković T, Anaćkov GT, et al. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of endemic Plantago reniformis G. Beck. Food Res. Int. 2012; 49: 501–507.
Silva CG, Raulino RJ, Cerqueira DM, Mannarino SC, Pereira MD, Panek AD, et al. In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. Phytomedicine 2009 ; 16 : 761–767. doi: 10.1016/j.phymed.2008.12.019.
Silva BA, Malva JO, Dias ACP. St. John's Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem. 2008 ; 110 : 611–619. doi.org/10.1016/j.foodchem.2008.02.047.
Jung MJ, Heo SIl, Wang MH. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem 2008 ; 108 : 482–487. doi: 10.1016/j.foodchem.2007.10.081.
Compaoré M, Lamien-Meda A, Mogoşan C, Lamien CE, Kiendrebeogo M, Voştinaru O, et al. Antioxidant, diuretic activities and polyphenol content of Stereospermum kunthianum Cham. (Bignoniaceae). Nat. Prod. Res. 2011 ; 25 : 1777–88. doi: 10.1080/14786419.2010.488630.
Han J, Weng X, Bi K. Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon. Food Chem 2008 ; 106 : 2–10.
Zarrelli A, Romanucci V, De Napoli L, Previtera L, Di Fabio G. Synthesis of new silybin derivatives and evaluation of their antioxidant properties. Helv. Chim. Acta. 2015; 98 : 399–409. DOI: 10.1002/hlca.201400282.
Nile SH and Park SW. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from Maize (Zea mays L.). Chem. Biol. Drug. Des. 2014 ; 83 : 119–125. doi:10.1111/cbdd.12205.
Weng XC and Wang W. Antioxidant activity of compounds isolated from Silvia plebeia. Food Chem. 2000 ; 71 : 489-493.
Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20: 933-956.
Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur. J. Pharmacol. 2006 ; 538 : 188–194. Doi:10.1016/j.ejphar.2006.03.070.
Wang ZH, Kang KA, Zhang R, Piao MJ, Jo SH, Kim JS, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ. Toxicol. Pharmacol. 2010 ; 29 : 12–18. doi: 10.1016/j.etap.2009.08.007.
Gupta MB, Bhalla TN, Gupta GP, Mitra CR, Bhargava KP. Anti-inflammatory activity of taxifolin. Jpn. J. Pharmacol. 1971 ; 21 : 377–82.
Kawabata K, Sugiyama Y, Sakano T, Ohigashi H. Flavonols enhanced production of anti-inflammatory substance(s) by bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. BioFactors 2013 ; 39 : 422–429. doi: 10.1002/biof.1081.
Li YY, Huang SS, Lee MM, Deng JS, Huang GJ. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-B and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 2015; 25 : 332–339.
Saffoon N, Uddin R, Subhan N, Hossain H, Reza HM, Alam MA. In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum Variegatum found in Bangladesh. Adv. Pharm. Bull. 2014 ; 4 : 533–541. doi: 10.5681/apb.2014.079.
Sekido C, Nishimura N, Takai M, Hasumi K. Inhibition of plasma hyaluronan-binding protein autoactivation by laccaic acid. Biosci. Biotechnol. Biochem. 2010 ; 74 : 2320–2322. Doi: 10.1271/bbb.100373.
Kim HH, Oh MH, Park KJ, Heo JH, Lee MW. Anti-inflammatory activity of sulfate-containing phenolic compounds isolated from the leaves of Myrica rubra. Fitoterapia 2014 ; 92 : 188–193. doi: 10.1016/j.fitote.2013.10.007.
Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 2005 ; 145 : 934–944. doi:10.1038/sj.bjp.0706246.
Landa P, Kutil Z, Temml V, Vuorinen A, Malik J, Dvorakova M, et al. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones. Planta Med. 2012 ; 78 : 326–333. doi: 10.1055/s-0031-1280430.
Yoshida LS, Kohri S, Tsunawaki S, Kakegawa T, Taniguchi T, Ohmuro HT, et al. Evaluation of radical scavenging properties of shikonin. J. Clin. Biochem. Nutr. 2014 ; 55 : 90-96. doi: 10.3164/jcbn.13-107.
Singh B and Sharma RA. Anti-inflammatory and antimicrobial activity of shikonin derivatives from Arnebia hispidissima (Lehm.) DC. Phytopharmacology 2012 ; 3 : 68–81.
Melzig MF, Pertz HH, Krenn L. Anti-inflammatory and spasmolytic activity of extracts from Droserae herba. Phytomedicine 2001 ; 8 : 225–229. doi:10.1078/0944-7113-00031.
Park MK., Lee HJ, Choi JK, Kim HJ, Kang JH, Lee EJ, et al. Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacol. Biochem. Behav. 2014 ; 118 : 10–15. doi: 10.1016/j.pbb.2013.12.019.
El-Naga R. N. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis. Toxicol. Appl. Pharmacol. 2014 ; 274 : 87–95. doi: 10.1016/j.taap.2013.10.031.
Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J. Agric. Food Chem. 2005 ; 53 : 8537-8541. doi: 10.1021/jf051985c.
Sato M, Murakami K, Uno M, Ikubo H, Nakagawa Y, Katayama S, et al. Structure-activity relationship for (+)-taxifolin isolated from Silymarin as an inhibitor of amyloid beta aggregation. Biosci. Biotechnol. Biochem. 2013 ; 77 : 1100-1103. doi:10.1271/bbb.120925.
Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, et al. Silibinin inhibits acetylcholinesterase activity and amyloid béta peptide aggregation: A dual-target drug for the treatment of Alzheimer's disease. Neurobiol. Aging. 2011 ; 36 : 1792–1807. Doi:10.1016/j.neurobiolaging.2015.02.002.
Chang YX, Ge AH, Donnapee S, Li J, Bai Y, Liu J, et al. The multi-targets integrated finger printing for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. J. Ethnopharmacol. 2015 ; 164 : 210–222. doi: 10.1016/j.jep.2015.02.018.
Dhanya R, Arun KB, Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, et al. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem. 2014 ; 158 : 546–554. doi: 10.1016/j.foodchem.2014.02.151.
Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ, et al. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem. Toxicol. 2014 ; 63 : 221-232. doi.org/10.1016/j.fct.2013.11.013.
Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med. 2012 ; 12 : 265–272.
Liang T, Wang Y, Zhang C, Ling H, Zhao S, Fang X. Hypolipidemic effect of myricetin. Chin. J. Lab. Diagn. 2009 ; 13 : 1670–1672.
Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopez-Novoa JM, Leverve XM, et al. The flavonoid silibinin decreases glucose-6- phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose. Cell. Physiol. Biochem. 2007; 20 : 925–34.
Bouderba S, Sanchez-Martin C, Villanueva GR, Detaille D, Koceí¯r EA. Beneficial effects of silibinin against the progression of metabolic syndrome, increased oxidative stress, and liver steatosis in Psammomys obesus, a relevant animal model of human obesity and diabetes. J. Diabetes. 2014 ; 6 : 184–192. doi: 10.1111/1753-0407.12083
Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, et al. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway. Endocrine 2015 ; 50 : 378–389. doi: 10.1007/s12020-015-0599-5.
Zhou Y and Mao T. Influence of dihydromyricetin on lowering blood glucose concentration and reducing early kidney damage in imparied glucose tolerance rats. Adv. Mater. Res. 2014 ; 1004–1005 : 857–863.
Kamei R, Kitagawa Y, Kadokura M, Hattori F, Hazeki O, Ebina Y, et al. Shikonin stimulates glucose uptake in 3T3-L1 adipocytes via an insulin-independent tyrosine kinase pathway. Biochem. Biophys. Res. Commun. 2002 ; 292 : 642–651.
O¨berg AI, Yassin K, Csikasz RI, Dehvari N, Shabalina IG, Hutchinson DS, et al. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats. PLoS One 2011 ; 6 : 1–10.
Cimanga K, Ying L, Bruyne TD, Apers S, Cos P, Hermans N, et al. Radical scavenging and xanthine oxidase inhibitory activity of phenolic compounds from Bridelia ferruginea stem bark. J. Pharm Pharmacol. 2001 ; 53 : 757-61.
Dew TP, Day AJ, Morgan MRA. Xanthine oxidase activity in vitro: Effects of food extracts and components. J. Agric. Food Chem. 2005 ; 53 : 6510-6515.
Hadj-Salem J, Humeau C, Chevalot I, Harscoat-Schiavo C, Vanderesse R, Blanchard F, et al. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochem. 2010 ; 45 : 382–389.
Kim HJ, Mun JY, Chun YJ, Choi KH, Ham SW, Kim MY. Effects of a naphthoquinone analog on tumor growth and apoptosis induction. Arch. Pharm. Res. 2003 ; 26: 405–410.
Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 2004 ; 65 : 1208-16.
Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, et al. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol. Pharm. 2015 ; 12 : 954-65. doi: 10.1021/mp5008053.
Baloch SK, Ma L, Xu GH, Bai LF, Zhao H, Tang CY, et al. A potent anticancer agent of shikonin derivative targeting tubulin. Chirality 2015 ; 27 : 274-80. doi: 10.1002/chir.22425.
Lin HY, Li ZK, Bai LF, Baloch SK, Wang F, Qiu HY, et al. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochem. Pharmacol. 2015 ; 96 : 93-106. doi: 10.1016/j.bcp.2015.04.021.
Seo EJ, Wiench B, Hamm R, Paulsen M, Zu Y, Fu Y, et al. Cytotoxicity of natural products and derivatives toward MCF-7 cell monolayers and cancer stem-like mammospheres. Phytomedicine 2015 ; 22 : 438–443. doi: 10.1016/j.phymed.2015.01.012.
Yang J and liu RH. Synergistic Effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem. 2009 ; 57 : 8581–8586. Doi: 10.1021/jf8039796.
Amado NG, Predes D, Fonseca BF, Cerqueira DM, Reis AH, Dudenhoeffer AC, et al. Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the wnt/catenin signaling pathway. J. Biol. Chem. 2014 ; 289 : 35456–35467. doi: 10.1074/jbc.M114.621599.
You HJ, Ahn HJ, Ji GE. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J. Agric. Food Chem. 2010 ; 58 : 10886-10892. Doi: 10.1021/jf102871.
Zhu TTJ, Choi RCY, Chu GKY, Cheung AWH, Gao QT, Li J, et al. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. J. Agric. Food Chem. 2007 ; 55: 2438-2445. doi: 10.1021/jf063299z.
Kim YJ, Kang KS, Choi KC, Ko H. Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells. Bioorg. Med. Chem. Lett. 2015 ; 25 : 2559-2564. doi: 10.1016/j.bmcl.2015.04.054.
Saify ZS, Mushtaq N, Noor F, Takween S. Arif M. Role of quinone moiety as antitumour agents: a review. Pak. J. Pharm. Sci. 1999 ; 12 : 21–31.
Onaran I, Sencan S, Demirtaş H, Aydemir B, Ulutin T, Okutan M. Toxic-dose warfarin-induced apoptosis and its enhancement by gamma ionizing radiation in leukemia K562 and HL-60 cells is not mediated by induction of oxidative stress. Naunyn-Schmied. Arch. Pharmacol. 2008 ; 378 : 471–481. doi: 10.1007/s00210-008-0306-7.
Ham SW, Park J, Lee SJ, Kim W, Kang K, Choi KH. Naphthoquinone analogs as inactivators of cdc 25 phosphatase. Bioorg Med Chem Lett 8. 1998 ; 2507-2510.