Issue
miR-22 exerts anti-alzheimic effects via the regulation of apoptosis of hippocampal neurons
Corresponding Author(s) : Jingxian Han
Cellular and Molecular Biology,
Vol. 64 No. 15: Issue 15
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Jack CR, Bennett DA, Blennow K. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14: 535.
- Alaa AM, Yoon J, Hu S, van der Schaar M. Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes. IEEE Trans Biomed Eng 2018; 65: 207-218.
- Harrison P. Alzheimer's disease and chromosome 14: Different gene, same process? British J Psychiatr 2018; 163: 2-5.
- Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy. Brain 2018; 141: 550-567.
- Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev RNA 2018; 9: 1463.
- Ross SP, Baker KE, Fisher A, Hoff L, Pak ES, Murashov AK. MiRNA-431 prevents amyloid-β-induced synapse loss in neuronal cell culture model of Alzheimer's Disease by silencing Kremen1. Front Cell Neurosci 2018; 12: 87.
- Zhao Y, Lukiw WJ. Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer's Disease. Front Neurol 2018; 9: 145.
- Meng YC, Ding ZY, Wang HQ, Ning LP, Wang C. Effect of microRNA-155 on angiogenesis after cerebral infarction of rats through AT1R/VEGFR2 pathway. Asian Pac J Trop Med 2015; 8: 829-835.
- Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 2017; 16: 5434-5440.
- Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b upregulated in Alzheimer's Disease activates cell cycle entry, Tau phosphorylation, and apoptosis in post-mitotic neurons. J Neurosci 2013; 33: 14645-14659.
- Jovicic A, Moser R, Santos MDFS, Silva Santos Mde F, Luthi-Carter R. MicroRNA-22 overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's Disease-related mechanisms. Plos One 2013; 8: 54222.
- Gunn-Moore D, Kaidanovich-Beilin O, Gallego-Iradi MC, Gunn-Moore F, Lovestone S. Alzheimer's disease in humans and other animals: A consequence of post-reproductive life span and longevity rather than aging. Alzheimers Dement 2018; 14: 195-204.
- Segerstrom SC. Personality and incident Alzheimer's disease: Theory, evidence, and future directions. J Gerontol 2018; 12: 43.
- Lu J, Shu R, Zhu Y. Dysregulation and dislocation of SFPQ disturbed DNA organization in Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis 2018; 22: 1311-1321.
- Mnn V, Ras LF, DeFelice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Basic Clin Med 2018; 136: 160-171.
- An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement 2018; 14: 318-329.
- Kay DW. Genetics, Alzheimer's disease and senile dementia. British J Psychiatr 2018; 154: 311-320.
- Hu X, Song C, Fang M, Li C. Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 15: 1795-1802.
- Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, et al. Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer's Disease. DNA Cell Biol 2018; 37: 220-226.
- Zhang Y, Wang J, Wang C, Li Z, Liu X, Zhang J, et al. Pharmacological basis for the use of Evodiamine in Alzheimer's Disease: Anti-oxidation and anti-apoptosis. Int J Mol Sci 2018; 19: 5.
- Ting Y, Medina DJ, Strair RK, Schaar DG. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 2010; 394: 606-611.
- Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, et al. MiR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011; 193: 409-424.
- Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM, et al. The oncogenic microRNA (miR-22) targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013; 13: 87-101.
- Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21: 2531-2540.
References
Jack CR, Bennett DA, Blennow K. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14: 535.
Alaa AM, Yoon J, Hu S, van der Schaar M. Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes. IEEE Trans Biomed Eng 2018; 65: 207-218.
Harrison P. Alzheimer's disease and chromosome 14: Different gene, same process? British J Psychiatr 2018; 163: 2-5.
Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy. Brain 2018; 141: 550-567.
Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev RNA 2018; 9: 1463.
Ross SP, Baker KE, Fisher A, Hoff L, Pak ES, Murashov AK. MiRNA-431 prevents amyloid-β-induced synapse loss in neuronal cell culture model of Alzheimer's Disease by silencing Kremen1. Front Cell Neurosci 2018; 12: 87.
Zhao Y, Lukiw WJ. Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer's Disease. Front Neurol 2018; 9: 145.
Meng YC, Ding ZY, Wang HQ, Ning LP, Wang C. Effect of microRNA-155 on angiogenesis after cerebral infarction of rats through AT1R/VEGFR2 pathway. Asian Pac J Trop Med 2015; 8: 829-835.
Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 2017; 16: 5434-5440.
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b upregulated in Alzheimer's Disease activates cell cycle entry, Tau phosphorylation, and apoptosis in post-mitotic neurons. J Neurosci 2013; 33: 14645-14659.
Jovicic A, Moser R, Santos MDFS, Silva Santos Mde F, Luthi-Carter R. MicroRNA-22 overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's Disease-related mechanisms. Plos One 2013; 8: 54222.
Gunn-Moore D, Kaidanovich-Beilin O, Gallego-Iradi MC, Gunn-Moore F, Lovestone S. Alzheimer's disease in humans and other animals: A consequence of post-reproductive life span and longevity rather than aging. Alzheimers Dement 2018; 14: 195-204.
Segerstrom SC. Personality and incident Alzheimer's disease: Theory, evidence, and future directions. J Gerontol 2018; 12: 43.
Lu J, Shu R, Zhu Y. Dysregulation and dislocation of SFPQ disturbed DNA organization in Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis 2018; 22: 1311-1321.
Mnn V, Ras LF, DeFelice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Basic Clin Med 2018; 136: 160-171.
An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement 2018; 14: 318-329.
Kay DW. Genetics, Alzheimer's disease and senile dementia. British J Psychiatr 2018; 154: 311-320.
Hu X, Song C, Fang M, Li C. Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 15: 1795-1802.
Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, et al. Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer's Disease. DNA Cell Biol 2018; 37: 220-226.
Zhang Y, Wang J, Wang C, Li Z, Liu X, Zhang J, et al. Pharmacological basis for the use of Evodiamine in Alzheimer's Disease: Anti-oxidation and anti-apoptosis. Int J Mol Sci 2018; 19: 5.
Ting Y, Medina DJ, Strair RK, Schaar DG. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 2010; 394: 606-611.
Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, et al. MiR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011; 193: 409-424.
Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM, et al. The oncogenic microRNA (miR-22) targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013; 13: 87-101.
Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21: 2531-2540.