Issue
The concurrent effect of acyclovir and rosemary on glioblastoma cell culture
Corresponding Author(s) : Dilek Göktürk
Cellular and Molecular Biology,
Vol. 65 No. 3: Issue 3
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus which large amount of people in world has interacted with. Recent studies indicated that CMV DNA is associated with several cancer types including "Glioblastoma (GBM)” which is the most common and aggressive type of primary brain cancer. In clinical studies it was shown that several antiviral medicines prolonged life span of glioblastoma patients. One of them is Acyclovir (ACV) which is a type of nucleoside analog, used to cure viral infections and might be a potential treatment supplement for Glioblastoma. In this study we aimed to investigate if ACV had cytotoxic effect on glioblastoma cell line U87 MG and also the effect of ACV on healthy cells. Furthermore it was aimed to search the effect of Rosmarinus Officinalis also known as rosemary which is an aromatic, perennial plant concurrent with ACV on glioblastoma and healthy cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J. Neurooncol. 2011 Jun 5;103(2):231–8.
- Xu S, Schafer X, Munger J. Expression of Oncogenic Alleles Induces Multiple Blocks to Human Cytomegalovirus Infection. J Virol. 2016;90(9):4346–56.
- Vescovini R, Telera AR, Pedrazzoni M, et al. Impact of persistent cytomegalovirus infection on dynamic changes in human immune system profile. PLoS ONE. 2016;11(3):1–14.
- Vanarsdall AL, Howard PW, Wisner TW, et al.. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions. PLoS Pathog. 2016;12(4):1–21.
- Snoeck R, Andrei G, Ve J, et al.Influence of 6 or 8-substitution on the antiviral activity of 3-phenethylthiomethylimidazo [ 1 , 2- a ] pyridine against human cytomegalovirus ( HCMV ) and varicella-zoster virus ( VZV ). Bioorg. Med. Chem. 2007;15:7209–19.
- Falardeau G, Lachance H, St-Pierre A, et al. Design and synthesis of a potent macrocyclic 1,6-napthyridine anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 2005;15(6):1693–5.
- Nogalski MT, Chan GCT, Stevenson E V, et al. The HCMV gH/gL/UL128-131 complex triggers the specific cellular activation required for efficient viral ınternalization into target monocytes. PLoS Pathog. 2013;9(7).
- Sourvinos G, Morou A, Sanidas I, et al. The Downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 Axis and by Human Cytomegalovirus (HCMV) associated factors allows the activation of the hcmv major ıe promoter and the transition to productive ınfection. PLoS Pathog. 2014 May 15;10(5).
- Sinzger C, Grefte A, Plachter B, et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol. 1995;76(4):741–50.
- Boeckh M, Geballe AP. Cytomegalovirus : pathogen , paradigm , and puzzle. J. Clin. Invest. 2011;121(5):1673–80.
- Lepiller Q, Abbas W, Kumar A, et al. HCMV Activates the IL-6-JAK-STAT3 Axis in HepG2 cells and primary human hepatocytes. PLoS ONE. 2013;8(3).
- Michaelis M, Doerr HW, Cinatl J. The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia. 2009;11(1):1–9.
- Cobbs CS, Harkins L, Samanta M, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.
- Wick W, Platten M. CMV infection and glioma, a highly controversial concept struggling in the clinical arena. Neuro-oncology. 2014;16(3):332–3.
- Quentin L. Cytomegalovirus and tumors: two players for one goal-ımmune escape. Open Virol J. 2011;5(1):60–9.
- Lin GG, Scott JG. Is HCMV a tumor promoter?. Virus Res. 2012;100(2):130–4.
- Price RL, Song J, Bingmer K, et al. Cytomegalovirus contributes to glioblastoma in the context of tumor suppressor mutations. Cancer Res. 2013;73(11):3441–50.
- Cobbs C, Khan S, Matlaf L, et al. HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation. Oncotarget. 2014;5(4):1091–100.
- Tseliou M, Al-Qahtani A, Alarifi S, et al. The role of RhoA, RhoB and RhoC GTPases in cell morphology, proliferation and migration in human cytomegalovirus (HCMV) infected glioblastoma cells. Cell. Physiol. Biochem. 2016;38(1):94–109.
- Caspani EM, Crossley PH, Redondo-Garcia C, et al. Glioblastoma: A pathogenic crosstalk between tumor cells and pericytes. PLoS One. 2014;9(7)
- Elkamhawy A, Viswanath ANI, Pae AN, et al. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). Eur J Med Chem. 2015;103:210–22.
- Schijns VEJC, Pretto C, Devillers L, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33(23):2690–6.
- Cobbs CS. Does valganciclovir have a role in glioblastoma therapy?. Neuro-oncology. 2014;16(3):330–1.
- Söderberg-Nauclér C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N. Engl. J. Med. 2013;369(10):985–6.
- Smith CA, Wigdahl B, Rapp F. Synergistic antiviral activity of acyclovir and ınterferon on human cytomegalovirus. Antimicrob. Agents. Chemother. 1983;24(3):325–32.
- Talarico CL, Burnette TC, Miller WH, et al. Acyclovir is Phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob. Agents. Chemother. 1999;43(8):1941–6.
- Zakirova NF, Shipitsyn A V, Jasko M V, et al. Phosphoramidate derivatives of acyclovir : synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro. Bioorg. Med. Chem. 2012;20(19):5802–9.
- Allard A, Bergström T, Mei Y. Acid , an antiviral compound with activity against acyclovir-resistant isolates of herpes simplex virus types 1 and 2. Antimicrob. Agents. Chemother. 2012;56(11):5735–43.
- Al-Subaie MM, Hosny KM, Mohamed El-Say K, et al. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int. J. Nanomedicine. 2015;10:3973–85.
- Dhaliwal S, Jain S, Singh HP, et al. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 2008;10(2):322–30.
- Gunness P, Aleksa K, Koren G. The effect of acyclovir on the tubular secretion of creatinine in vitro. J. Transl. Med. 2010;8(1):139.
- Shamsipur M, Pourmortazavi SM, Akbar A, et al. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS J. 2013;14(1).
- Borrás-Linares I, Stojanović Z, Quirantes-Piné R, et al. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int. J. Mol. Sci. 2014;15(11):20585–606.
- Gaya M, Repetto V, Toneatto J, et al. Antiadipogenic effect of carnosic acid, a natural compound present in rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim. Biophys. Acta. 2013;1830(6):3796-3806
- Hussain AI, Anwar F, Chatha SAS, et al. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010;2010(41):1070-1078.
- Rašković A, Milanović I, Pavlović N,et al. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med. 2014;14:225.
- Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, et al. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol. 2015; 45:355-368.
- Teiten MH, Gaascht F, Dicato M, et al. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol. 2013;86(9):1239-1247.
- Habtemariam S. The therapeutic potential of rosemary ( Rosmarinus officinalis ) diterpenes for alzheimer's disease. Evidence-Based Complement Altern Med. 2016;2016:1–14.
- Inatani R, Nakatani N, Fuwa H. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agric. Biol. Chem. 1983;47:521–8.
- Berrington D, Lall N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (hela) cell line. Evidence-Based Complement Altern Med. 2012;2012:1–11.
- Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep. 2007;17(6):1525–31.
- González-Vallinas M, Molina S, Vicente G, et al. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol Res. 2013;72(2013):61–8.
- Barnı MV, Carlını MJ, Cafferata E, et al. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol Rep. 2012;27:1041-1048.
- Petiwala SM, Johnson JJ. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015; 367(2015):93–102.
- Petiwala SM, Puthenveetil AG, Johnson JJ. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front Pharmacol. 2013;4:1–4.
- Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr. 2010; 65:158–163.
- Ozdemir MD, Gokturk D. The Effect of Rosmarinus Officinalis and Chemotherapeutic Etoposide on Glioblastoma (U87 MG) Cell Culture. Turk Neurosurg. 2017;3:1–5.
References
Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J. Neurooncol. 2011 Jun 5;103(2):231–8.
Xu S, Schafer X, Munger J. Expression of Oncogenic Alleles Induces Multiple Blocks to Human Cytomegalovirus Infection. J Virol. 2016;90(9):4346–56.
Vescovini R, Telera AR, Pedrazzoni M, et al. Impact of persistent cytomegalovirus infection on dynamic changes in human immune system profile. PLoS ONE. 2016;11(3):1–14.
Vanarsdall AL, Howard PW, Wisner TW, et al.. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions. PLoS Pathog. 2016;12(4):1–21.
Snoeck R, Andrei G, Ve J, et al.Influence of 6 or 8-substitution on the antiviral activity of 3-phenethylthiomethylimidazo [ 1 , 2- a ] pyridine against human cytomegalovirus ( HCMV ) and varicella-zoster virus ( VZV ). Bioorg. Med. Chem. 2007;15:7209–19.
Falardeau G, Lachance H, St-Pierre A, et al. Design and synthesis of a potent macrocyclic 1,6-napthyridine anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 2005;15(6):1693–5.
Nogalski MT, Chan GCT, Stevenson E V, et al. The HCMV gH/gL/UL128-131 complex triggers the specific cellular activation required for efficient viral ınternalization into target monocytes. PLoS Pathog. 2013;9(7).
Sourvinos G, Morou A, Sanidas I, et al. The Downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 Axis and by Human Cytomegalovirus (HCMV) associated factors allows the activation of the hcmv major ıe promoter and the transition to productive ınfection. PLoS Pathog. 2014 May 15;10(5).
Sinzger C, Grefte A, Plachter B, et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol. 1995;76(4):741–50.
Boeckh M, Geballe AP. Cytomegalovirus : pathogen , paradigm , and puzzle. J. Clin. Invest. 2011;121(5):1673–80.
Lepiller Q, Abbas W, Kumar A, et al. HCMV Activates the IL-6-JAK-STAT3 Axis in HepG2 cells and primary human hepatocytes. PLoS ONE. 2013;8(3).
Michaelis M, Doerr HW, Cinatl J. The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia. 2009;11(1):1–9.
Cobbs CS, Harkins L, Samanta M, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.
Wick W, Platten M. CMV infection and glioma, a highly controversial concept struggling in the clinical arena. Neuro-oncology. 2014;16(3):332–3.
Quentin L. Cytomegalovirus and tumors: two players for one goal-ımmune escape. Open Virol J. 2011;5(1):60–9.
Lin GG, Scott JG. Is HCMV a tumor promoter?. Virus Res. 2012;100(2):130–4.
Price RL, Song J, Bingmer K, et al. Cytomegalovirus contributes to glioblastoma in the context of tumor suppressor mutations. Cancer Res. 2013;73(11):3441–50.
Cobbs C, Khan S, Matlaf L, et al. HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation. Oncotarget. 2014;5(4):1091–100.
Tseliou M, Al-Qahtani A, Alarifi S, et al. The role of RhoA, RhoB and RhoC GTPases in cell morphology, proliferation and migration in human cytomegalovirus (HCMV) infected glioblastoma cells. Cell. Physiol. Biochem. 2016;38(1):94–109.
Caspani EM, Crossley PH, Redondo-Garcia C, et al. Glioblastoma: A pathogenic crosstalk between tumor cells and pericytes. PLoS One. 2014;9(7)
Elkamhawy A, Viswanath ANI, Pae AN, et al. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). Eur J Med Chem. 2015;103:210–22.
Schijns VEJC, Pretto C, Devillers L, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33(23):2690–6.
Cobbs CS. Does valganciclovir have a role in glioblastoma therapy?. Neuro-oncology. 2014;16(3):330–1.
Söderberg-Nauclér C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N. Engl. J. Med. 2013;369(10):985–6.
Smith CA, Wigdahl B, Rapp F. Synergistic antiviral activity of acyclovir and ınterferon on human cytomegalovirus. Antimicrob. Agents. Chemother. 1983;24(3):325–32.
Talarico CL, Burnette TC, Miller WH, et al. Acyclovir is Phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob. Agents. Chemother. 1999;43(8):1941–6.
Zakirova NF, Shipitsyn A V, Jasko M V, et al. Phosphoramidate derivatives of acyclovir : synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro. Bioorg. Med. Chem. 2012;20(19):5802–9.
Allard A, Bergström T, Mei Y. Acid , an antiviral compound with activity against acyclovir-resistant isolates of herpes simplex virus types 1 and 2. Antimicrob. Agents. Chemother. 2012;56(11):5735–43.
Al-Subaie MM, Hosny KM, Mohamed El-Say K, et al. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int. J. Nanomedicine. 2015;10:3973–85.
Dhaliwal S, Jain S, Singh HP, et al. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 2008;10(2):322–30.
Gunness P, Aleksa K, Koren G. The effect of acyclovir on the tubular secretion of creatinine in vitro. J. Transl. Med. 2010;8(1):139.
Shamsipur M, Pourmortazavi SM, Akbar A, et al. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS J. 2013;14(1).
Borrás-Linares I, Stojanović Z, Quirantes-Piné R, et al. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int. J. Mol. Sci. 2014;15(11):20585–606.
Gaya M, Repetto V, Toneatto J, et al. Antiadipogenic effect of carnosic acid, a natural compound present in rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim. Biophys. Acta. 2013;1830(6):3796-3806
Hussain AI, Anwar F, Chatha SAS, et al. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010;2010(41):1070-1078.
Rašković A, Milanović I, Pavlović N,et al. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med. 2014;14:225.
Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, et al. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol. 2015; 45:355-368.
Teiten MH, Gaascht F, Dicato M, et al. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol. 2013;86(9):1239-1247.
Habtemariam S. The therapeutic potential of rosemary ( Rosmarinus officinalis ) diterpenes for alzheimer's disease. Evidence-Based Complement Altern Med. 2016;2016:1–14.
Inatani R, Nakatani N, Fuwa H. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agric. Biol. Chem. 1983;47:521–8.
Berrington D, Lall N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (hela) cell line. Evidence-Based Complement Altern Med. 2012;2012:1–11.
Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep. 2007;17(6):1525–31.
González-Vallinas M, Molina S, Vicente G, et al. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol Res. 2013;72(2013):61–8.
Barnı MV, Carlını MJ, Cafferata E, et al. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol Rep. 2012;27:1041-1048.
Petiwala SM, Johnson JJ. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015; 367(2015):93–102.
Petiwala SM, Puthenveetil AG, Johnson JJ. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front Pharmacol. 2013;4:1–4.
Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr. 2010; 65:158–163.
Ozdemir MD, Gokturk D. The Effect of Rosmarinus Officinalis and Chemotherapeutic Etoposide on Glioblastoma (U87 MG) Cell Culture. Turk Neurosurg. 2017;3:1–5.