Issue
Copyright (c) 2023 Pshtiwan Bebane, Sarbast Ihsan Mustafa, Hevidar Taha, Omeed Darweesh, Ramiar Kamal Kheder
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Molecular evidence for the involvement of alternative splicing in jejunum epithelial cells in broiler chickens fed dietary supplementation with olive mill wastewater
Corresponding Author(s) : Pshtiwan Bebane
Cellular and Molecular Biology,
Vol. 69 No. 6: Issue 6
Abstract
There is no doubt that alternative splicing is conserved in chickens and mammals, but evaluating the effects of nutrition on alternative splicing in chickens is crucial in a wide range of fields. Although the olive diet has been extensively studied in human, mouse, and chicken systems, little is known about its impact on chicken alternative splicing systems. Hence, the current study aimed to assess the effect of feeding polyphenol-enriched olive mill wastewater to female broiler chickens via alternative splicing by analyzing high-throughput sequencing raw reads of RNA utilizing genomics and bioinformatics methodologies. It also aimed to look for differences in isoform expression and discover molecular functions and biological processes linked to differentially transcribed genes. The findings of our study revealed that 51 genes involved in isoform switching and alternative splicing events were not used evenly. This is due to the reduced use of ATSS in olive mill wastewater groups compared to control groups. Furthermore, the gene ontology analysis revealed that 25 GO terms were enriched in biological processes, 16 GO terms were enriched in molecular function, and 25 GO terms were enriched in cellular components. Kinase and adenylyltransferase activities were significantly enriched in terms. The molecular analysis presented herein provides valuable insight into the role of phenolics in alternative gene-splicing mechanisms in chickens, demonstrating how an industrial waste product can be repurposed as a feed supplement with a satisfactory outcome.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX