Copyright (c) 2023 Yanfeng Ma, Mingyu Su, Wei Qian, Yongli Xuan, Tao Chen, Ran Zhou, Tingbo Jiang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.CXCR4-overexpressed exosomes from cardiosphere-derived cells attenuate myocardial ischemia/reperfusion injury by transferring miRNA to macrophages and regulating macrophage polarization
Corresponding Author(s) : Tingbo Jiang
Cellular and Molecular Biology,
Vol. 69 No. 12: New discoveries in gene expression and mutation
Abstract
Cardiosphere-derived cells (CDCs) are emerging as ideal candidates for managing cardiac inflammation, albeit with some limitations. Recent literatures have indicated that exosomes secreted by CDCs with C-X-C motif chemokine receptor 4 (CXCR4) overexpression can promote cardiac function after myocardial infarction and there have been some reports of miRNAs involved in ischemia/reperfusion (I/R) therapy. Therefore, we are interested in the role of CXCR4-overexpressed CDC-derived exosomes in delivering specific miRNA after myocardial I/R injury. In this research, we first constructed CDC-derived exosomes that overexpressed CXCR4 and miR-27a-5p, miR-182, or miR-101a. Then, we co-cultured the engineered exosomes with RAW264.7 cells and injected them intravenously into myocardial I/R model mice. In vitro, results showed that proinflammatory cytokines levels in the culture supernatant were decreased and the expression of M2 phenotypic markers were increased. Administration of engineered exosomes improved cardiac function, reduced infarct size, alleviated macrophage infiltration, and regulated M2 macrophage polarization after myocardial I/R, suggesting their implications in cardiac injury repair.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX