Copyright (c) 2023 Jongsung Lee, See-Hyoung Park
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Anti-cancer activity of microbubble conjugated with Sorafenib containing liposome and IL4R-targeting peptide in kidney cancer cells
Corresponding Author(s) : See-Hyoung Park
Cellular and Molecular Biology,
Vol. 69 No. 14: Cancer molecular biology: Diagnosis and treatment
Abstract
Microbubble-based cancer treatment is a promising new approach that utilizes tiny gas-filled bubbles to deliver cancer drugs directly to tumor sites. This study aims to investigate the anti-cancer effect of the novel microbubble (MB) complex conjugated with sorafenib containing liposome and interleukin 4 receptor (IL4R) targeting peptide in kidney cancer cells. MBs were synthesized by using a solvent with an emulsion evaporation technique. To target kidney tumor cells, the produced MBs were conjugated with sorafenib (SOR) loaded liposomes and peptide ligands for (IL4RTP). The anti-cancer effect of the MB complex was accessed by WST-1 assay, confocal microscopy analysis, and western blotting analysis. The finally prepared IL4RTP (MB-Lipo(SOR)-IL4RTP) showed an average size of 1,600 nm. A498, a kidney cancer cell line that expresses IL4Rα strongly, had an uptake of the MB-Lipo(SOR)-IL4RTP when exposed to frequency ultrasonic energy. Additionally, MB-Lipo(SOR)-IL4RTP suppressed the growth of A498 cells in an IL4R-dependent manner. This cell proliferation assay results were validated by western blotting analysis of the signal transduction proteins such as FOXO3, phosphorylated Erk, total Erk, and p27. Taken together, these findings show that MB-Lipo(SOR)-IL4RTP exerts the effective targeting capacity for A498 kidney cancer cells via regulation of Erk phosphorylation as a promising ultrasound contrast and therapeutic agent for treating kidney cancers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX