Issue
Copyright (c) 2024 Sargol Aminnezhad, Qassim Hassan Aubais Aljelehawy, Mohammad Rezaei , Mohammad Reza Mohammadi, Mohammad Ali Zonobian, Masomeh Nazari, Fardin Fathi, Saba Dadpour, Paria Habibi, Soheila Kashanian, Morahem Ashengroph, Hadi Mohammadzade, Yousef Azarakhsh, Sepehr Kahrizi, Mehran Alavi, Zhenchao Xu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Revolutionizing medicine: Molecularly imprinted polymers as precision tools in cancer diagnosis and antibiotic detection
Corresponding Author(s) : Mehran Alavi
Cellular and Molecular Biology,
Vol. 70 No. 5: Issue 5
Abstract
Molecularly imprinted polymers (MIPs) are pivotal in medicine, mimicking biological receptors with enhanced specificity and affinity. Comprising templates, functional monomers, and cross-linkers, MIPs form stable three-dimensional polymer networks. Synthetic templates like glycan and aptamers improve efficiency, guiding the molecular imprinting process. Cross-linking determines MIPs' morphology and mechanical stability, with printable hydrogels offering biocompatibility and customizable properties, mimicking native extracellular matrix (ECM) microenvironments. Their versatility finds applications in tissue engineering, soft robotics, regenerative medicine, and wastewater treatment. In cancer research, MIPs excel in both detection and therapy. MIP-based detection systems exhibit superior sensitivity and selectivity for cancer biomarkers. They target nucleic acids, proteins, and exosomes, providing stability, sensitivity, and adaptability. In therapy, MIPs offer solutions to challenges like multidrug resistance, excelling in drug delivery, photodynamic therapy, photothermal therapy, and biological activity regulation. In microbiology, MIPs serve as adsorbents in solid-phase extraction (SPE), efficiently separating and enriching antibiotics during sample preparation. They contribute to bacterial identification, selectively capturing specific strains or species. MIPs aid in detecting antibiotic residues using fluorescent nanostructures and developing sensors for sulfadiazine detection in food samples. In summary, MIPs play a pivotal role in advancing medical technologies with enhanced sensitivity, selectivity, and versatility. Applications range from biomarker detection to innovative cancer therapies, making MIPs indispensable for the accurate determination and monitoring of diverse biological and environmental samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX