Issue
Copyright (c) 2024 Ranj Nadhim Salaie, Shehab Ahmed Hamad, Zhala Dara Meran
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Efficacy of ozonated olive oil against peri-implant microbes isolated from peri-implantitis
Corresponding Author(s) : Ranj Nadhim Salaie
Cellular and Molecular Biology,
Vol. 70 No. 6: Issue 6
Abstract
This study aimed to investigate the antibacterial and antimicrobial activity of ozone gel against oral biofilms grown on titanium dental implant discs. The experiment used medical grade five titanium discs on which peri-implant isolated biofilms were grown. The experimental groups were control, Streptococcus mutans (S. mutans) and Granulicatella adiacens (G. adiacens), (n = 6). The oral microbes grown on titanium discs were exposed to ozone gel for 3 minutes and the antibacterial activity was assessed by turbidity test and adherence test for the antibiofilm activity test. Bacterial morphology and confluence were investigated by scanning electron microscopy (SEM), (n=3). Two bacterial species were identified from the peri-implant sample, S. mutans and G. adiacens. The results showed that adding ozone to the bacterial biofilm on titanium dental implants did not exhibit significant antibacterial activity against S. mutans. Moreover, there was no significant difference in antibiofilm activity between control and treatment groups. However, significant antibacterial and antibiofilm effect was exhibited by ozone gel against G. adiacens. Ozonated olive oil can be considered as a potential antimicrobial agent for disinfecting dental implant surfaces and treating peri-implantitis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX