Issue
Copyright (c) 2024 Xia Wang, Weihu Huang, Yongtie Li, Chen Zhu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.The fibroblast heterogeneity across keloid, normal and tumor samples from single-cell resolution
Corresponding Author(s) : Weihu Huang
Cellular and Molecular Biology,
Vol. 70 No. 7: Issue 7
Abstract
Keloids are defined as a benign dermal fibroproliferative disorder, with excessive fibroblast proliferation, and excessive overproduction of collagen. Although the heterogeneity during keloid development has been extensively studied, the heterogeneity across different skin states is still unclear. So, a global comparison across skin states is needed. In this study, we collected samples from 5 states of skin, including melanoma, cutaneous squamous cell carcinoma, keloid skin, scar skin, and healthy control samples. The heterogeneity of cell types and subtypes was analyzed and compared across 5 states, and we observed significant differences among them. Our results showed a cancer-like fibroblast, which is not in normal samples, may play an important role in antigen processing and presentation. We also noticed that the mesenchymal fibroblast increased in keloid samples, which highly expressed POSTN. And POSTN may participate in epithelial-mesenchymal transition and collagen overexpression to promote keloid growth. These findings help to understand the alteration among different skin states and provide potential genetic basis for keloid therapies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX