Issue
Copyright (c) 2024 Rebwar Hassan Mohammed, Khurshid A. Kheder Khrwatany, Snur Mohammad Amin Hassan

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Effect of traction force during surgery on physical integrity and histological changes in peripheral nerves: experimental study on rabbits
Corresponding Author(s) : Rebwar Hassan Mohammed
Cellular and Molecular Biology,
Vol. 71 No. 2: Issue 2
Abstract
Sensory and motor nerve damage is a common complication of maxillofacial surgery and trauma. Procedures such as orthognathic surgery, tumor resection, and salivary gland interventions can damage peripheral nerves when the surrounding soft tissue or the nerve itself is manipulated. The purpose of this study was to evaluate the histological changes in the sciatic and median nerves of albino rabbits following traction-induced nerve injury. Nine albino rabbits were included in the study and divided equally into three groups, with three rabbits per group. In each rabbit, four peripheral nerves were exposed: the right and left sciatic nerves and the right and left median nerves. In Group A, varying traction forces (0.5 N, 1 N, 1.5 N, and a control of 0 N) were applied to each nerve for 5 minutes. The same traction forces used in Group A were applied to Groups B and C for 10 minutes and 15 minutes, respectively. Nerve fiber abnormalities, as well as damage to the axons, myelin sheath, and connective tissue layers, were assessed through histological examination. Histopathological evaluation of the injured nerves revealed Grade I and Grade II nerve injuries in Group A, while Grade IV and Grade V nerve injuries were noted in Groups B and C, respectively, based on the criteria established by the histopathologist.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX