Issue
Expression of cardiac inwardly rectifying potassium channels in pentylenetetrazole kindling model of epilepsy in rats
Corresponding Author(s) : Enes Akyüz
Cellular and Molecular Biology,
Vol. 64 No. 15: Issue 15
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ficker, D.M., et al., Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology, 1998. 51(5): p. 1270-4.
- Lhatoo, S.D. and J.W. Sander, Sudden unexpected death in epilepsy. Hong Kong Med J, 2002. 8(5): p. 354-8.
- Leestma, J.E., Forensic considerations in sudden unexpected death in epilepsy. Epilepsia, 1997. 38(11 Suppl): p. S63-6.
- Hesdorffer, D.C., et al., Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota. Neurology, 2011. 76(1): p. 23-7.
- Feely, M., Fortnightly review: drug treatment of epilepsy. BMJ, 1999. 318(7176): p. 106-9.
- Laxer, K.D., et al., The consequences of refractory epilepsy and its treatment. Epilepsy Behav, 2014. 37: p. 59-70.
- Nei, M., R.T. Ho, and M.R. Sperling, EKG abnormalities during partial seizures in refractory epilepsy. Epilepsia, 2000. 41(5): p. 542-8.
- Tomson, T., et al., Heart rate variability in patients with epilepsy. Epilepsy Res, 1998. 30(1): p. 77-83.
- Lotufo, P.A., et al., A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia, 2012. 53(2): p. 272-82.
- Devinsky, O., Effects of Seizures on Autonomic and Cardiovascular Function. Epilepsy Curr, 2004. 4(2): p. 43-46.
- Moseley, B., et al., Autonomic epileptic seizures, autonomic effects of seizures, and SUDEP. Epilepsy Behav, 2013. 26(3): p. 375-85.
- Dlouhy, B.J., B.K. Gehlbach, and G.B. Richerson, Sudden unexpected death in epilepsy: basic mechanisms and clinical implications for prevention. J Neurol Neurosurg Psychiatry, 2016. 87(4): p. 402-13.
- Hibino, H., et al., Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev, 2010. 90(1): p. 291-366.
- Bond, C.T., et al., Cloning and expression of a family of inward rectifier potassium channels. Receptors Channels, 1994. 2(3): p. 183-91.
- Villa, C. and R. Combi, Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci, 2016. 10: p. 81.
- Pattnaik, B.R., et al., Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review. Mol Genet Metab, 2012. 105(1): p. 64-72.
- Anumonwo, J.M. and A.N. Lopatin, Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol, 2010. 48(1): p. 45-54.
- Day, M., et al., Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci, 2005. 25(38): p. 8776-87.
- Gonzalez, C., et al., K(+) channels: function-structural overview. Compr Physiol, 2012. 2(3): p. 2087-149.
- Brenner, R. and K.S. Wilcox, Potassium Channelopathies of Epilepsy, in Jasper's Basic Mechanisms of the Epilepsies, J.L. Noebels, et al., Editors. 2012: Bethesda (MD).
- Gross, G.J. and J.A. Auchampach, Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res, 1992. 70(2): p. 223-33.
- D'Adamo, M.C., et al., K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci, 2013. 7: p. 134.
- Karschin, C. and A. Karschin, Ontogeny of gene expression of Kir channel subunits in the rat. Mol Cell Neurosci, 1997. 10(3-4): p. 131-48.
- D'Avanzo, N., et al., Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. Protein Expr Purif, 2010. 71(1): p. 115-21.
- Humphries, E.S. and C. Dart, Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets: Promise and Pitfalls. J Biomol Screen, 2015. 20(9): p. 1055-73.
- Racine, R.J., Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol, 1972. 32(3): p. 281-94.
- Jansen, K. and L. Lagae, Cardiac changes in epilepsy. Seizure, 2010. 19(8): p. 455-60.
- Lee, J. and O. Devinsky, The role of autonomic dysfunction in sudden unexplained death in epilepsy patients. Rev Neurol Dis, 2005. 2(2): p. 61-9.
- Goldman, A.M., et al., Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med, 2009. 1(2): p. 2ra6.
- Glasscock, E., et al., Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci, 2010. 30(15): p. 5167-75.
- Powell, K.L., et al., HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia, 2014. 55(4): p. 609-20.
- Snyders, D.J., Structure and function of cardiac potassium channels. Cardiovasc Res, 1999. 42(2): p. 377-90.
- Grandi, E., et al., Potassium channels in the heart: structure, function and regulation. J Physiol, 2017. 595(7): p. 2209-2228.
- Lopatin, A.N. and C.G. Nichols, Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol, 2001. 33(4): p. 625-38.
- Zaritsky, J.J., et al., Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res, 2000. 87(2): p. 160-6.
- McLerie, M. and A.N. Lopatin, Dominant-negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. J Mol Cell Cardiol, 2003. 35(4): p. 367-78.
- Young, C.C., et al., Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol, 2009. 587(Pt 17): p. 4213-33.
- Xu, L., et al., Tenidap, an agonist of the inwardly rectifying K+ channel Kir2.3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurol Res, 2013. 35(6): p. 561-7.
- Haruna, Y., et al., Genotype-phenotype correlations of KCNJ2 mutations in Japanese patients with Andersen-Tawil syndrome. Hum Mutat, 2007. 28(2): p. 208.
- Priori, S.G., et al., A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res, 2005. 96(7): p. 800-7.
- Dobrev, D., et al., The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation, 2005. 112(24): p. 3697-706.
- Yang, Y., et al., Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 2010. 86(6): p. 872-80.
- Mazarati, A., et al., Regulation of kindling epileptogenesis by hippocampal galanin type 1 and type 2 receptors: The effects of subtype-selective agonists and the role of G-protein-mediated signaling. J Pharmacol Exp Ther, 2006. 318(2): p. 700-8.
- Kaufmann, K., et al., ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci, 2013. 4(9): p. 1278-86.
- Steinhauser, C., M. Grunnet, and G. Carmignoto, Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience, 2016. 323: p. 157-69.
- Michalak, Z., et al., Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia. Neurology, 2017. 88(6): p. 551-561.
- Haider, S., et al., Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J Mol Cell Cardiol, 2005. 38(6): p. 927-36.
- Ravindran, K., et al., The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res, 2016. 127: p. 19-29.
- Rivero, A. and A.B. Curtis, Sex differences in arrhythmias. Current Opinion in Cardiology, 2010. 25(1): p. 8-15.
- Bhave, G., et al., Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med Chem, 2010. 2(5): p. 757-74.
References
Ficker, D.M., et al., Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology, 1998. 51(5): p. 1270-4.
Lhatoo, S.D. and J.W. Sander, Sudden unexpected death in epilepsy. Hong Kong Med J, 2002. 8(5): p. 354-8.
Leestma, J.E., Forensic considerations in sudden unexpected death in epilepsy. Epilepsia, 1997. 38(11 Suppl): p. S63-6.
Hesdorffer, D.C., et al., Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota. Neurology, 2011. 76(1): p. 23-7.
Feely, M., Fortnightly review: drug treatment of epilepsy. BMJ, 1999. 318(7176): p. 106-9.
Laxer, K.D., et al., The consequences of refractory epilepsy and its treatment. Epilepsy Behav, 2014. 37: p. 59-70.
Nei, M., R.T. Ho, and M.R. Sperling, EKG abnormalities during partial seizures in refractory epilepsy. Epilepsia, 2000. 41(5): p. 542-8.
Tomson, T., et al., Heart rate variability in patients with epilepsy. Epilepsy Res, 1998. 30(1): p. 77-83.
Lotufo, P.A., et al., A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia, 2012. 53(2): p. 272-82.
Devinsky, O., Effects of Seizures on Autonomic and Cardiovascular Function. Epilepsy Curr, 2004. 4(2): p. 43-46.
Moseley, B., et al., Autonomic epileptic seizures, autonomic effects of seizures, and SUDEP. Epilepsy Behav, 2013. 26(3): p. 375-85.
Dlouhy, B.J., B.K. Gehlbach, and G.B. Richerson, Sudden unexpected death in epilepsy: basic mechanisms and clinical implications for prevention. J Neurol Neurosurg Psychiatry, 2016. 87(4): p. 402-13.
Hibino, H., et al., Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev, 2010. 90(1): p. 291-366.
Bond, C.T., et al., Cloning and expression of a family of inward rectifier potassium channels. Receptors Channels, 1994. 2(3): p. 183-91.
Villa, C. and R. Combi, Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci, 2016. 10: p. 81.
Pattnaik, B.R., et al., Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review. Mol Genet Metab, 2012. 105(1): p. 64-72.
Anumonwo, J.M. and A.N. Lopatin, Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol, 2010. 48(1): p. 45-54.
Day, M., et al., Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci, 2005. 25(38): p. 8776-87.
Gonzalez, C., et al., K(+) channels: function-structural overview. Compr Physiol, 2012. 2(3): p. 2087-149.
Brenner, R. and K.S. Wilcox, Potassium Channelopathies of Epilepsy, in Jasper's Basic Mechanisms of the Epilepsies, J.L. Noebels, et al., Editors. 2012: Bethesda (MD).
Gross, G.J. and J.A. Auchampach, Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res, 1992. 70(2): p. 223-33.
D'Adamo, M.C., et al., K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci, 2013. 7: p. 134.
Karschin, C. and A. Karschin, Ontogeny of gene expression of Kir channel subunits in the rat. Mol Cell Neurosci, 1997. 10(3-4): p. 131-48.
D'Avanzo, N., et al., Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. Protein Expr Purif, 2010. 71(1): p. 115-21.
Humphries, E.S. and C. Dart, Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets: Promise and Pitfalls. J Biomol Screen, 2015. 20(9): p. 1055-73.
Racine, R.J., Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol, 1972. 32(3): p. 281-94.
Jansen, K. and L. Lagae, Cardiac changes in epilepsy. Seizure, 2010. 19(8): p. 455-60.
Lee, J. and O. Devinsky, The role of autonomic dysfunction in sudden unexplained death in epilepsy patients. Rev Neurol Dis, 2005. 2(2): p. 61-9.
Goldman, A.M., et al., Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med, 2009. 1(2): p. 2ra6.
Glasscock, E., et al., Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci, 2010. 30(15): p. 5167-75.
Powell, K.L., et al., HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia, 2014. 55(4): p. 609-20.
Snyders, D.J., Structure and function of cardiac potassium channels. Cardiovasc Res, 1999. 42(2): p. 377-90.
Grandi, E., et al., Potassium channels in the heart: structure, function and regulation. J Physiol, 2017. 595(7): p. 2209-2228.
Lopatin, A.N. and C.G. Nichols, Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol, 2001. 33(4): p. 625-38.
Zaritsky, J.J., et al., Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res, 2000. 87(2): p. 160-6.
McLerie, M. and A.N. Lopatin, Dominant-negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. J Mol Cell Cardiol, 2003. 35(4): p. 367-78.
Young, C.C., et al., Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol, 2009. 587(Pt 17): p. 4213-33.
Xu, L., et al., Tenidap, an agonist of the inwardly rectifying K+ channel Kir2.3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurol Res, 2013. 35(6): p. 561-7.
Haruna, Y., et al., Genotype-phenotype correlations of KCNJ2 mutations in Japanese patients with Andersen-Tawil syndrome. Hum Mutat, 2007. 28(2): p. 208.
Priori, S.G., et al., A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res, 2005. 96(7): p. 800-7.
Dobrev, D., et al., The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation, 2005. 112(24): p. 3697-706.
Yang, Y., et al., Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 2010. 86(6): p. 872-80.
Mazarati, A., et al., Regulation of kindling epileptogenesis by hippocampal galanin type 1 and type 2 receptors: The effects of subtype-selective agonists and the role of G-protein-mediated signaling. J Pharmacol Exp Ther, 2006. 318(2): p. 700-8.
Kaufmann, K., et al., ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci, 2013. 4(9): p. 1278-86.
Steinhauser, C., M. Grunnet, and G. Carmignoto, Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience, 2016. 323: p. 157-69.
Michalak, Z., et al., Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia. Neurology, 2017. 88(6): p. 551-561.
Haider, S., et al., Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J Mol Cell Cardiol, 2005. 38(6): p. 927-36.
Ravindran, K., et al., The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res, 2016. 127: p. 19-29.
Rivero, A. and A.B. Curtis, Sex differences in arrhythmias. Current Opinion in Cardiology, 2010. 25(1): p. 8-15.
Bhave, G., et al., Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med Chem, 2010. 2(5): p. 757-74.