The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.
Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway
Pyridoxine is a water- soluble pyridine derivative. The effect of pyridoxine in cell models of Alzheimer's disease (AD), and the potential mechanisms involved, are not fully understood. In this study, the anti-AD effects of pyridoxine were studied in an AD cell model using a combination of techniques viz MTT assay, western blotting and assays for reactive oxygen species (ROS). Assays were also carried out to determine the mechanism underlying the antioxidant effects of pyridoxine. The results obtained revealed that pyridoxine exerted a protective potential against AD, attenuated ROS levels, decreased the expressions of cytoplasmic Nrf2, and upregulated whole-cell HO-1 expression. These results suggest that the anti-AD effect of pyridoxine may be attributed to its anti-oxidant property elicited via stimulation of the Nrf2/HO-1 pathway.
Li, C., Wang, R., Hu, C., Wang, H., Ma, Q., Chen, S., & He, Y. (2018). Pyridoxine exerts antioxidant effects in cell model of Alzheimer’s disease via the Nrf-2/HO-1 pathway. Cellular and Molecular Biology, 64(10), 119–124. https://doi.org/10.14715/cmb/2018.64.10.19