Issue
Molecular detection of type III secretory toxins in Pseudomonas aeruginosa isolates
Corresponding Author(s) : Khanzad Khudhur Jarjees
Cellular and Molecular Biology,
Vol. 66 No. 5: Issue 5
Abstract
Pseudomonas aeruginosa has been known as a common unscrupulous pathogen that reasons cause nosocomial infections in patients with immunocompromise. Infection with multi-drug resistant Pseudomonas aeruginosa infection in many patients is a public health problem. The bacterium causes urinary tract infections, respiratory tract infections, skin inflammation and inflammation, soft tissue infections, bacteremia, bone and joint infections, gastrointestinal infections and various systemic infections, especially in patients with severe burns, cancer and AIDS, whose immune systems are suppressed. Among diverse virulence factors, the type III secretion system is known as a significant agent in virulence and development of antimicrobial resistance in P. aeruginosa. A total of 50 isolates of P. aeruginosa were gathered from burn wound and milk specimens. Documentation and antimicrobial susceptibility evidence were performed using the VITEK 2 system. Multiplex PCR was done to detect the secretion toxins-encoding genes. Out of 50 samples: 45/225 (20%) burn wound and 6/120 (5%) raw milk samples were found positive for P. aeruginosa. The multiplex PCR analysis of ExoT and ExoY genes showed that all P. aeruginosa 50 (100%) were positive. The occurrence of the ExoS and ExoU genes was 97.7% and 86.6% among clinical isolates while none of the raw milk isolates harbored the ExoU gene and 60% of them carried the ExoS gene. The results found 20 (40%) of isolates were multidrug resistance and the most effective antibiotics against clinical isolates were Ciprofloxacin and Meropenem. The aim of this study was to prevalence the exotoxin genes encoded type III secretion system and pattern of antimicrobial susceptibility of P. aeruginosa isolated from clinical and raw milk specimens.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Pirnay J-P, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PloS one. 2009; 4(11).
- Hallin M, Deplano A, Roisin S, Boyart V, De Ryck R, Nonhoff C, et al. Pseudo-outbreak of extremely drug-resistant pseudomonas aeruginosa urinary tract infections due to contamination of an automated urine analyzer. J Clin Microbiol 2012; 50(3):580-2.
- Mokhtari A, Amini K. Genotyping of Pseudomonas aeruginosa strains as a multidrug resistant (MDR) bacterium and evaluating the prevalence of ESBLs and some virulence factors encoding genes by PFGE and ERIC-PCR methods. Iran J Pharmaceutic Res 2019; 18(3):1580-94.
- Chen J, Su Z, Liu Y, Wang S, Dai X, Li Y, et al. Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, Chin Int J Infect Dis 2009; 13(6):717-21.
- Bahador N, Shoja S, Faridi F, Dozandeh-Mobarrez B, Qeshmi FI, Javadpour S, et al. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran J Microbiol 2019; 11(1):25.
- Galán JE, Curtiss R. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infec Immu 1990; 58(6):1879-85.
- Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62(2):379-433.
- Maresso AW, Deng Q, Pereckas MS, Wakim BT, Barbieri JT. Pseudomonas aeruginosa ExoS ADP"ribosyltransferase inhibits ERM phosphorylation. Cell Microbiol 2007; 9(1):97-105.
- Noomi B. Detection of virulence factors of Pseudomonas aeruginosa in different animals by using bacteriological and molecular methods. Iraq J Vet Sci 2019; 32(2):205-10.
- Galle M, Carpentier I, Beyaert R. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Peptide Sci 2012; 13(8):831-42.
- Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med 2014; 34(4):286-92.
- Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Critic Care 2014; 18(6):668.
- Frithz"Lindsten E, Du Y, Rosqvist R, Forsberg í…. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III"dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 1997; 25(6):1125-39.
- Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proceed Nat Acad Sci 1998; 95(23):13899-904.
- Hauser AR, Fleiszig S, Kang PJ, Mostov K, Engel JN. Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect Immu 1998; 66(4):1413-20.
- Finck"Barbançon V, Goranson J, Zhu L, Sawa T, Wiener"Kronish JP, Fleiszig SM, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25(3):547-57.
- Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and-resistant clinical isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2008; 14(4):330-6.
- Xiaohong J, Yao L, Wang Y, Zhao P. Correlation between virulence genotype and fluoroquinolone drugs resistance in Pseudomonas aeruginosa of lower respiratory tract infection. Chin J Zoonoses 2017; 33(1):38-42.
- Rabin SD, Hauser AR. Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immu 2005; 73(1):573-82.
- Hauser AR, Kang PJ, Engel JN. PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 1998; 27(4):807-18.
- Limpert AS. Functional genome analysis in Pseudomonas aeruginosa SG17M: Hannover: Universität; 2005.
- Sayner SL, Frank DW, King J, Chen H, VandeWaa J, Stevens T. Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circul Res 2004; 95(2):196-203.
- Brooks G, Carroll K, Butel J, Morse S, Mietzner T. Jawetz, Melnick, Adelberg Medical Microbiology. Placebo doo; 2015 Jan 1.
- Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in cellular and infection microbiology. 2017; 7:39.
- Avrain L, Mertens P, Van Bambeke F. RND efflux pumps in P. aeruginosa: an underestimated resistance mechanism. Antibiot Suscep 2013; 26321:26-8.
- Fleiszig S, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infec Immun 1997; 65(2):579-86.
- Hauser A, Kang P, Engel J. PepA, a novel secreted protein of Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1998; 27:807-18.
- Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiol 2001; 147(10):2659-69.
- Zhu H, Conibear TC, Bandara R, Aliwarga Y, Stapleton F, Willcox MD. Type III secretion system–associated toxins, proteases, serotypes, and antibiotic resistance of Pseudomonas aeruginosa isolates associated with keratitis. Curr Eye Res 2006; 31(4):297-306.
- Azimi S, Kafil HS, Baghi HB, Shokrian S, Najaf K, Asgharzadeh M, et al. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hygiene Infection Control. 2016; 11.
- Emaneini M, Kalantar-Neyestanaki D, Jabalameli L, Hashemi M, Beigverdi R, Jabalameli F. Molecular analysis and antimicrobial resistance pattern of distinct strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Iran. Iran J Microbiol 2019; 11(2):98.
- Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A, Elmi A, et al. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12(1):1-6.
- Banerjee S, Batabyal K, Joardar S, Isore D, Dey S, Samanta I, et al. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet World 2017; 10(7):738.
- Megahed AA, Nasr SS, Mohammed GM. Bacteriological and molecular detection of pseudomonas species from raw milk sold in Port-Said City Markets. 2015.
- Bradbury RS, Roddam L, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 2010; 59(8):881-90.
- Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clinic Infect Dis 2015; 60(4):539-48.
- Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9(1):1-13.
- Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9(1):1-3.
- Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PloS one. 2011; 6(10).
- Preisler A, Mraheil MA, Heisig P. Role of novel gyrA mutations in the suppression of the fluoroquinolone resistance genotype of vaccine strain Salmonella Typhimurium vacT (gyrA D87G). J Antimicrob Chemotherapy 2006; 57(3):430-6.
- Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PloS one. 2012; 7(8).
- Battle SE, Meyer F, Rello J, Kung VL, Hauser AR. Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 2008; 190(21):7130-40.
- Bordbar M, Darvishzadeh R, Pazhouhandeh M, Kahrizi D. An overview of genome editing methods based on endonucleases. Modern Genetics J 2020; 15(2): 75-92.
- Ghaheri M, Kahrizi D, Yari K, Babaie A, Suthar RS, Kazemi E. A comparative evaluation of four DNA extraction protocols from whole blood sample. Cell Mol Biol; 62(3):120-124.
- Sedighi M, Moghoofei M, Kouhsari E, et al. In silico analysis and molecular modeling of RNA polymerase, sigma S (RpoS) protein in Pseudomonas aeruginosa PAO1. Rep Biochem Mol Biol. 2015;4(1):32"42.
- Gholami M, Salimi Chirani A, Falak R, Moshiri M, Razavi S, Irajian G. Induction of Specific Humoral Immune Response in Mice against a Pseudomonas aeruginosa Chimeric PilQ/PilA Protein. Rep Biochem Mol Biol. 2018;7(1):38"44.
References
Pirnay J-P, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PloS one. 2009; 4(11).
Hallin M, Deplano A, Roisin S, Boyart V, De Ryck R, Nonhoff C, et al. Pseudo-outbreak of extremely drug-resistant pseudomonas aeruginosa urinary tract infections due to contamination of an automated urine analyzer. J Clin Microbiol 2012; 50(3):580-2.
Mokhtari A, Amini K. Genotyping of Pseudomonas aeruginosa strains as a multidrug resistant (MDR) bacterium and evaluating the prevalence of ESBLs and some virulence factors encoding genes by PFGE and ERIC-PCR methods. Iran J Pharmaceutic Res 2019; 18(3):1580-94.
Chen J, Su Z, Liu Y, Wang S, Dai X, Li Y, et al. Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, Chin Int J Infect Dis 2009; 13(6):717-21.
Bahador N, Shoja S, Faridi F, Dozandeh-Mobarrez B, Qeshmi FI, Javadpour S, et al. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran J Microbiol 2019; 11(1):25.
Galán JE, Curtiss R. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infec Immu 1990; 58(6):1879-85.
Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62(2):379-433.
Maresso AW, Deng Q, Pereckas MS, Wakim BT, Barbieri JT. Pseudomonas aeruginosa ExoS ADP"ribosyltransferase inhibits ERM phosphorylation. Cell Microbiol 2007; 9(1):97-105.
Noomi B. Detection of virulence factors of Pseudomonas aeruginosa in different animals by using bacteriological and molecular methods. Iraq J Vet Sci 2019; 32(2):205-10.
Galle M, Carpentier I, Beyaert R. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Peptide Sci 2012; 13(8):831-42.
Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med 2014; 34(4):286-92.
Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Critic Care 2014; 18(6):668.
Frithz"Lindsten E, Du Y, Rosqvist R, Forsberg í…. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III"dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 1997; 25(6):1125-39.
Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proceed Nat Acad Sci 1998; 95(23):13899-904.
Hauser AR, Fleiszig S, Kang PJ, Mostov K, Engel JN. Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect Immu 1998; 66(4):1413-20.
Finck"Barbançon V, Goranson J, Zhu L, Sawa T, Wiener"Kronish JP, Fleiszig SM, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25(3):547-57.
Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and-resistant clinical isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2008; 14(4):330-6.
Xiaohong J, Yao L, Wang Y, Zhao P. Correlation between virulence genotype and fluoroquinolone drugs resistance in Pseudomonas aeruginosa of lower respiratory tract infection. Chin J Zoonoses 2017; 33(1):38-42.
Rabin SD, Hauser AR. Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immu 2005; 73(1):573-82.
Hauser AR, Kang PJ, Engel JN. PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 1998; 27(4):807-18.
Limpert AS. Functional genome analysis in Pseudomonas aeruginosa SG17M: Hannover: Universität; 2005.
Sayner SL, Frank DW, King J, Chen H, VandeWaa J, Stevens T. Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circul Res 2004; 95(2):196-203.
Brooks G, Carroll K, Butel J, Morse S, Mietzner T. Jawetz, Melnick, Adelberg Medical Microbiology. Placebo doo; 2015 Jan 1.
Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in cellular and infection microbiology. 2017; 7:39.
Avrain L, Mertens P, Van Bambeke F. RND efflux pumps in P. aeruginosa: an underestimated resistance mechanism. Antibiot Suscep 2013; 26321:26-8.
Fleiszig S, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infec Immun 1997; 65(2):579-86.
Hauser A, Kang P, Engel J. PepA, a novel secreted protein of Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1998; 27:807-18.
Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiol 2001; 147(10):2659-69.
Zhu H, Conibear TC, Bandara R, Aliwarga Y, Stapleton F, Willcox MD. Type III secretion system–associated toxins, proteases, serotypes, and antibiotic resistance of Pseudomonas aeruginosa isolates associated with keratitis. Curr Eye Res 2006; 31(4):297-306.
Azimi S, Kafil HS, Baghi HB, Shokrian S, Najaf K, Asgharzadeh M, et al. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hygiene Infection Control. 2016; 11.
Emaneini M, Kalantar-Neyestanaki D, Jabalameli L, Hashemi M, Beigverdi R, Jabalameli F. Molecular analysis and antimicrobial resistance pattern of distinct strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Iran. Iran J Microbiol 2019; 11(2):98.
Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A, Elmi A, et al. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12(1):1-6.
Banerjee S, Batabyal K, Joardar S, Isore D, Dey S, Samanta I, et al. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet World 2017; 10(7):738.
Megahed AA, Nasr SS, Mohammed GM. Bacteriological and molecular detection of pseudomonas species from raw milk sold in Port-Said City Markets. 2015.
Bradbury RS, Roddam L, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 2010; 59(8):881-90.
Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clinic Infect Dis 2015; 60(4):539-48.
Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9(1):1-13.
Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9(1):1-3.
Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PloS one. 2011; 6(10).
Preisler A, Mraheil MA, Heisig P. Role of novel gyrA mutations in the suppression of the fluoroquinolone resistance genotype of vaccine strain Salmonella Typhimurium vacT (gyrA D87G). J Antimicrob Chemotherapy 2006; 57(3):430-6.
Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PloS one. 2012; 7(8).
Battle SE, Meyer F, Rello J, Kung VL, Hauser AR. Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 2008; 190(21):7130-40.
Bordbar M, Darvishzadeh R, Pazhouhandeh M, Kahrizi D. An overview of genome editing methods based on endonucleases. Modern Genetics J 2020; 15(2): 75-92.
Ghaheri M, Kahrizi D, Yari K, Babaie A, Suthar RS, Kazemi E. A comparative evaluation of four DNA extraction protocols from whole blood sample. Cell Mol Biol; 62(3):120-124.
Sedighi M, Moghoofei M, Kouhsari E, et al. In silico analysis and molecular modeling of RNA polymerase, sigma S (RpoS) protein in Pseudomonas aeruginosa PAO1. Rep Biochem Mol Biol. 2015;4(1):32"42.
Gholami M, Salimi Chirani A, Falak R, Moshiri M, Razavi S, Irajian G. Induction of Specific Humoral Immune Response in Mice against a Pseudomonas aeruginosa Chimeric PilQ/PilA Protein. Rep Biochem Mol Biol. 2018;7(1):38"44.