Issue
Copyright (c) 2023 Aili Xuan, Mei Yang, Qun Xia, Qian Sun
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Downregulation of NOX4 improves airway remodeling and inflammation by the TGF-β1-Smad2/3 pathway in asthma
Corresponding Author(s) : Qian Sun
Cellular and Molecular Biology,
Vol. 69 No. 9: Issue 9
Abstract
Asthma is a respiratory inflammatory disease, and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is involved in the progression of respiratory diseases. However, the role of NOX4 in asthma remains unclear. In the present study, we aimed to explore the effects of NOX4 on airway remodeling and inflammation. NOX4 expression was measured using immunocytochemistry (IHC), western blot, and real-time PCR (qPCR). Lung tissues were stained using the H&E assay. ELISA was used to examine the levels of airway remodeling-related indicators, and qPCR was used to detect airway inflammatory factors. The results indicated that NOX4 is highly expressed in lung tissues, bronchoalveolar lavage fluid (BALF), and serum of OVA-treated mice. Inhibition of NOX4 alleviated OVA-induced airway remodeling and inflammation. Similarly, TGF-β1 was also upregulated in BALF and serum OVA-induced mice. Inhibition of TGF-β1 signaling also improved airway remodeling and inflammation induced by OVA. Moreover, the downregulation of NOX4 inactivated the TGF-β1-Smad2/3 pathway, and TGF-β1 decreased Smad2/3 expression. Moreover, inhibition of the TGF-β1 was enhanced, while TGF-β1 reversed the effects on airway remodeling and inflammation induced by NOX4 inhibition. Taken together, the downregulation of NOX4 improves airway remodeling and inflammation via inactivation of the TGF-β1-Smad2/3 pathway in asthma mice, suggesting that NOX4 may be a therapeutic target for asthma.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX