Issue
Copyright (c) 2023 Chan Hum Park, Sung Woo Han, Su Hui Seong, Jae Sue Choi, Jin Pyeong Jeon, Takako Yokozawa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.N-Feruloylserotonin inhibits lipopolysaccharide-induced inflammation via SIRT1-stimulated FOXO1 and NF-κB signaling pathways in RAW 264.7 cells
Corresponding Author(s) : Takako Yokozawa
Cellular and Molecular Biology,
Vol. 69 No. 11: Issue 11
Abstract
Macrophages become activated by a variety of stimuli such as lipopolysaccharide (LPS) and participate in the process of immune responses. Activated macrophages produce various inflammatory mediators. In the present study, we investigated the anti-inflammatory mechanism of a serotonin derivative, N-feruloylserotonin, isolated from safflower seeds in RAW 264.7 macrophages. N-Feruloylserotonin treatment significantly attenuated these effects on LPS-induced reactive oxygen species, nitric oxide, and prostaglandin E2 production in RAW 264.7 macrophages. Furthermore, N-feruloylserotonin significantly decreased the abnormal expression of mitogen-activated protein kinase, such as phosphor (p)-c-Jun N-terminal kinase and p-extracellular-signal regulated kinase activation. Further research revealed that N-feruloylserotonin could stimulate sirtuin1 (SIRT1), then promote the forkhead box protein O1 (FOXO1), and suppress nuclear factor-kappa B (NF-kB) signaling pathways. The present study suggests that N-feruloylserotonin may be a new anti-inflammatory component and a promising candidate for anti-inflammatory therapeutic agents through the regulation of SIRT1-stimulated FOXO1 and NF-kB signaling pathways.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX