Issue
Copyright (c) 2023 Kunqiang Yu, Ri Xu, Lixu Wu, Weiwei Li, Ruhui Lin, Mengyuan Dai, Xu Ma
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Effects of microRNA-320 on learning and memory in mice with vascular cognitive impairment caused via cerebral ischemia
Corresponding Author(s) : Xu Ma
Cellular and Molecular Biology,
Vol. 69 No. 13: Issue 13
Abstract
We aimed to explore microRNA (miR)-320's impacts on learning and memory in mice with vascular cognitive impairment induced via cerebral ischemia. After establishment of a cerebral small vessel disease (CSVD) cognitive impairment model, application of corresponding treatment methods was in the model mice to inject miR-320 antagomir/agomir and their negative controls to the lateral ventricles: Test of the learning and memory abilities of mice was conducted; Detection of oxidative stress, inflammation, miR-320, Vascular endothelial growth factor (VEGF) and endostatin (ES) was implemented; Taking mouse hippocampal neuron cells was to detect the cell advancement. MiR-320 was elevated in the CSVD model; MiR-320 was negatively linked with the learning and memory abilities of mice; Repressing miR-320 was available to memorably elevate the learning and memory abilities of CSVD mice; Depressing miR-320 clearly drove CSVD mouse neovascular protein VEGF, but reduced inflammation, oxidative stress response and ES; Restraining miR-320 was available to contribute to mouse neuronal cell advancement. MiR-320 mitigates the learning and memory abilities of cerebral ischemia-induced vascular cognitive dysfunction mice to a certain extent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX