Issue
Copyright (c) 2023 Song Luo, Lijuan Yang, Bo Ma, Xiaorui Wang, Yi Lu, Shouliang Ma, Dan Wang, Hongdang Qu, Liangyu Zou
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Explore the pharmacological basis of ShengJiYiSui decoction in the treatment of amyotrophic lateral sclerosis based on network pharmacology and molecular docking technology
Corresponding Author(s) : Liangyu Zou
Cellular and Molecular Biology,
Vol. 69 No. 13: Issue 13
Abstract
Neurodegenerative illnesses have long been handled clinically by traditional Chinese medicine. This study is the first time to explore the pharmacological basis of application in amyotrophic lateral sclerosis (ALS) through network pharmacology and molecular docking techniques. In the present investigation, the TCMSP database and HIT2 database were examined for 9 TCM constituents of Sheng Ji Yu Sui Decoction (SJYSD), and the desired sites for the components were searched in the Drugbank database. and the Sjysd-target network was constructed. Associated targets for Amyotrophic lateral sclerosis (ALS) were then retrieved and collected in the OMIM, TTD, Genecards and DisGeNET databases. Protein-protein interaction and enrichment analysis were performed for the common targets of drugs and diseases, and molecular anchoring for the chosen core targets and related molecules was carried out. The results showed that SJYSD had 100 active compounds corresponding to 598 targets. ALS has a total of 5,325 genes. SJYSD and ALS share 163 genes, and these targets involve PI3K-AKT signaling, p53 signaling and IL-17 signaling, etc. The core components of luteolin and quercetin were discovered and may be used to treat ALS by regulating PI3K-AKT signaling pathway by HSP90AB1 protein.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX