Issue
Copyright (c) 2024 Rezhin Ali Mohammed, Karzan Abdulmuhsin Mohammad
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Transcriptional analysis of oxidative and nitrosative stress on oral opportunistic Candida albicans
Corresponding Author(s) : Rezhin Ali Mohammed
Cellular and Molecular Biology,
Vol. 70 No. 2: Issue 2
Abstract
The yeast Candida albicans is one of the most aggressive opportunistic pathogens in immunocompromised patients. The ability of the yeast to withstand stresses and radicals is of great concern. In the present study, four isolates of C. albicans were taken from patients with oral candidiasis and grown on RPMI for 24 hours at 37°C. Then, they were exposed to various concentrations of oxidative (H2O2) and nitrosative (HNO3) stress for two hours, and gene expression rates were measured through RT-PCR. After initial biofilm formation steps and growth validation, RNA extracted from the yeast and gene expression status were evaluated. Upon treatment with H2O2, the gene expression profile for ALS1, MLH1, and EXO1 showed approximately a fold increase in expression. While within HNO3 the yeast gene expression exhibited a dramatic increase in ALS1 up to 217 folds, while others such as MLH1, HWP1, and ERG11 showed a one-fold increase in the expression rate. The findings of this research indicate a considerable expression activity within the biofilm of Candida albicans, increased rate of DNA mismatch repair and break fixation may indicate the ability of the yeast to tolerate high concentrations of free radicals. It paves the way toward understanding the pathogenicity of the yeast and its survival capability inside macrophages. The study also revealed that the biofilm strategy of the yeast is more active within these stresses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX