Issue
Copyright (c) 2024 Xiaowei Li, Ying Shang, Xiaobao Zhao, Ming Kong, Hui An
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Mild hypothermia therapy alleviates neuronal damage and repairs cerebral ischemia-reperfusion injury through the SIRT1/AMPK pathway
Corresponding Author(s) : Xiaowei Li
Cellular and Molecular Biology,
Vol. 70 No. 8: Issue 8
Abstract
Cerebrovascular disease, one of the high-risk diseases worldwide, is high in morbidity, disability, mortality, and recurrence rates, which brings many harms to human beings such as physical and mental harm, economic losses, and impairment of social relations. Cerebral ischemia-reperfusion injury (CIRI) is one of the most common pathological manifestations, with mild hypothermia therapy being the most commonly used treatment in clinical practice. In this study, the research team established a CIRI animal model and found that the neuronal apoptosis rate was significantly increased, accompanied by significant ferroptosis, increased inflammation and oxidative stress damage in brain tissue, and obviously inhibited SIRT1/AMPK pathway. However, after mild hypothermia treatment, the pathological changes of CIRI rats were significantly reversed, and the SIRT1/AMPK pathway was reactivated. Therefore, mild hypothermia may achieve the purpose of CIRI repair by activating the SIRT1/AMPK signaling pathway, and targeted regulation of the SIRT1/AMPK signaling pathway may be a research direction for optimizing mild hypothermia therapy or developing new treatment plans for CIRI.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX