Issue
Copyright (c) 2023 Jun Zhang, Yingqiang Du, Feili Li
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Rosmarinic acid attenuates TNF-α induced cardiomyocyte injury via regulating miR-344a-3p
Corresponding Author(s) : Yafei Li
Cellular and Molecular Biology,
Vol. 70 No. 1: Issue 1
Abstract
To investigate whether rosmarinic acid protects cardiomyocytes from inflammatory damage through miRNAs, high-throughput sequencing and bioinformatics analysis were performed to identify TNF-α-induced inflammatory damage in cardiomyocytes and miRNAs differentially expressed in TNF-α-induced inflammatory injury in cardiomyocytes, and the bioinformatics analysis shown that the expression levels of 10 miRNAs were significantly up-regulated, and the expression levels of 6 miRNAs were significantly down-regulated. Among them, the expression level of miR-344a-3p was significantly up-regulated in the experimental group, while the expression level of miR-449c-5p was significantly down-regulated in experimental group of cells. The target genes of miR-344a-3p and miR-449c-5p were CCR1 and ATP2B4 respectively. The luciferase reporter system showed that luciferase activity in the WT-CCR1+miR-344a-3p mimic group was significantly decreased, and the expression of CCR1 was significantly decreased at mRNA and protein level after miR-344a-3p was transfected into H9C2 cells, indicating that TNF-α-induced inflammatory injury in cardiomyocytes, rosmarinic acid may up-regulate the expression of miR-344a-3p, thereby inhibiting the expression of CCR1 and ultimately protecting the cardiomyocytes from inflammatory damage. Thus, we thought that CCR1 might be a new therapeutic target for cardiomyocyte injury.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX